Probing the Universe with Gravitational Waves

R.Weiss, MIT on behalf of the LIGO Scientific Collaboration

TED^x Natick Natick High School January 26, 2019

PHILOSOPHIÆ NATURALIS PRINCIPIA MATHEMATICA

V. Beadavio

Autore J.S. NEWTON, Trin. Coll. Cantab. Soc. Mathefeos Professore Lucafiano, & Societatis Regalis Sodali.

IMPRIMATUR.

S. PEPYS, Reg. Soc. PRESES.

Julii 5. 1686.

LONDINI,

Juffu Societatis Regie ac Typis Josephi Streater. Proftat apud plures Bibliopolas. Anno MDCLXXXVII.

> Лен. 100, 34-7 Научная вибая́отека за

m₁ x m₂

 $\mathbf{F} = \mathbf{G}$

$G_{\mu\nu} = 8\pi T_{\mu\nu}$

Gravitational waves

Einstein 1916 and 1918

- Sources: non-spherically symmetric accelerated masses
- Kinematics:
 - propagate at speed of light
 - transverse waves, strains in space (tension and compression)

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	٠	٠	•	٠	•	•	•	٠	٠	٠	٠	٠	•	•
•	•	•	٠	•	•	•	•	•	•	•	•	•	٠	•
٠	•	٠	٠	٠	٠	•	٠	٠	٠	٠	٠	٠	٠	•
٠	•	٠	٠	•	٠	•	•	٠	٠	٠	•	٠	٠	•
•	٠	٠	•	٠	•	٠	•	٠	٠	٠	٠	٠	•	•
•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•
٠	٠	٠	•	٠	•	•		•	٠	٠	٠	•	٠	٠
•	•	٠	٠	٠	٠	•	٠	٠	٠	٠	٠	٠	٠	•
٠	•	٠	٠	•	٠	•	٠	٠	٠	٠	٠	٠	٠	•
٠	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•
٠	•	٠	٠	٠	٠	٠	•	٠	٠	٠	٠	٠	•	•
٠	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•
٠	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•
•	•	٠	٠	•	٠	•	٠	٠	٠	•	•	٠	•	•

Gravitational waves

Einstein 1916 and 1918

- Sources: non-spherically symmetric accelerated masses
- Kinematics:
 - propagate at speed of light
 - transverse waves, strains in space (tension and compression)

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	٠	٠	•	٠	•	•	•	٠	٠	٠	٠	٠	•	•
•	•	•	٠	•	•	•	•	•	•	•	•	•	٠	•
٠	•	٠	٠	٠	٠	•	٠	٠	٠	٠	٠	٠	٠	•
٠	•	٠	٠	•	٠	•	•	٠	٠	٠	•	٠	٠	•
•	٠	٠	•	٠	•	٠	•	٠	٠	٠	٠	٠	•	•
•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•
٠	٠	٠	•	٠	•	•		•	٠	٠	٠	•	٠	٠
•	•	٠	٠	٠	٠	•	٠	٠	٠	٠	٠	٠	٠	•
٠	•	٠	٠	•	٠	•	٠	٠	٠	٠	٠	٠	٠	•
٠	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•
٠	•	٠	٠	٠	٠	٠	•	٠	٠	٠	٠	٠	•	•
٠	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•
٠	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	٠	٠	•
•	•	٠	٠	•	٠	•	٠	٠	٠	•	•	٠	•	•

The measurement challenge

 $h = \frac{\Delta L}{L} \le 10^{-21}$

 $L = 4 \text{km} \quad \Delta L \le 4 \times 10^{-18} \text{ meters}$

 $\Delta L \sim 10^{-12}$ wavelength of light $\Delta L \sim 10^{-12}$ vibrations at earth's surface

Kip Thorne

LIGO Hanford

LIGO Livingston

Operational Under Construction Planned

Gravitational Wave Observatories

GEO600

VIRGO

KAGRA

LIGO India

"Solar Mass" Black Holes

Credit: LIGO/Caltech/Sonoma State (Simonnet)

Multi-messenger Astronomy with Gravitational Waves

Origin of the elements

age of universe

years hours minutes 1/10 to 1/1000 sec

Cosmic Microwave Background Polarization B Modes

Gravitational Wave Spectrum

Pulsar Timing

Isotropic GW background from unresolved sources

10⁻⁸

Frequency Hz

Small mass/BH infalls

Massive BH coalescences

Space-based Interferometers

10⁻⁴

Compact binary coalescences: neutron stars and black holes

Asymmetric pulsar rotations

Ground-based Interferometers

 10^{4}

 10^{0}

LIGO LIGO Scientific Collaboration

LSC

Spare slides after this one

Evolution of the initial detector 2001 - 2006

A clean non-detection

After Feb 11, 2016

JIPRESS

"Was that you I heard just now, or was it two black holes colliding

New Yorker Feb 12,, 2016

Matt Weber

Hubble constant measurement: Galaxy z and distance from GW amplitude

Localization with more detectors

Fairhurst 2011

Russel A. Hulse

Gravitational Waves the evidence

LIGO

Joseph Weber 1919-2000

Advanced LIGO design noise budget

-0.76s

Results of O1 and O2 run announced June 1, 2017

Triple coincidence GW 170814

 $M_1 = 30$ $M_2 = 25$ $\Delta M = 2.7$

Localization on sky and distance