

LONG BASELINE GRAVITATIONAL WAVE DETECTION – THE STATUS OF THE LIGO PROJECT

IPAC@ MIT July 29, 2002 Rainer Weiss for the LIGO Scientific Collaboration

LIGO-G9900XX-00-M

Direct detection of gravitational waves from astrophysical sources

Physics

- » Observations of gravitation in the strong field, high velocity limit
- » Determination of wave kinematics polarization and propagation
- » Tests for alternative relativistic gravitational theories

• Astrophysics

- » Measurement of coherent inner dynamics stellar collapse, pulsar formation....
- » Compact binary coalescence neutron star/neutron star, black hole/black hole
- » Neutron star equation of state
- » Primeval cosmic spectrum of gravitational waves
- Gravitational wave survey of the universe

LIGO Scientific Collaboration Member Institutions

University of Adelaide ACIGA Australian National University ACIGA California State Dominguez Hills Caltech LIGO Caltech Experimental Gravitation CEGG Caltech Theory CART University of Cardiff GEO **Carleton College Cornell University** Fermi National Laboratory University of Florida @ Gainesville Glasgow University GEO **Goddard Space Flight Center** University of Hannover GEO India-IUCAA IAP Nizhny Novgorod Iowa State University Joint Institute of Laboratory Astrophysics LIGO Livingston LIGOLA

LIGO Hanford LIGOWA Louisiana State University Louisiana Tech University **MIT LIGO** Max Planck (Garching) GEO Max Planck (Potsdam) GEO University of Michigan Moscow State University NAOJ - TAMA Northwestern University University of Oregon Pennsylvania State University Salish Kootenai College Southern University Stanford University Syracuse University University of Texas @ Brownsville University of Western Australia ACIGA University of Wisconsin @ Milwaukee Washington State University @ Pullman, WA

LIGO Scientific Collaboration

Measurement challenge

• Needed technology development to measure:

 $h = \Delta L/L < 10^{-21}$ $\Delta L < 4 \times 10^{-18} \text{ meters}$

LIGO-G9900XX-00-M

Parameter	Nominal Initial Interferometer
Arm length	4000 m
Laser type @wavelength	Nd:YAG $\lambda = 1064 \text{ nm}$
Input power at recycling cavity	6 W
Contrast defect 1-c	$< 3 \times 10^{-3}$
Mirror loss	< 1 x 10 ⁻⁴
Power recycling gain	30
Arm cavity storage time	880 µ sec
Cavity input mirror transmission	3 x 10 ⁻²
Mirror mass	10.7 kg
Mirror diameter	25 cm
Mirror internal Q	1 x 10 ⁶
Pendulum Q (structure damping)	1 x 10 ⁵
Pendulum period (single)	1 sec
Seismic isolation system	T(100Hz) = -110dB

Table 1: Initial detector parameters

Interferometers

international network

Simultaneously detect signal (within msec)

LIGO Sites

LIGO Livingston Observatory

LIGO-G000306

LIGO Hanford Observatory

LIGO Beam Tube

- LIGO beam tube under construction in January 1998
- 65 ft spiral welded sections
- girth welded in portable clean room in the field

1.2 m diameter - 3mm stainlessNO LEAKS !!50 km of weld

Beam Tube

bakeout

- I = 2000 amps for ~ 1 week
- no leaks !!
- final vacuum at level where not limiting noise, even for future detectors

LIGO

vacuum equipment

Vacuum Chambers

Vibration Isolation Systems

- » Reduce in-band seismic motion by 4 6 orders of magnitude
- » Compensate for microseism at 0.15 Hz by a factor of ten
- » Compensate (partially) for Earth tides

Seismic Isolation

Springs and Masses

Seismic Isolation

performance

Seismic Isolation

suspension system

- support structure is welded tubular stainless steel
- suspension wire is 0.31 mm diameter steel music wire

 fundamental violin mode frequency of 340 Hz

suspension assembly for a core optic

Core Optics

fused silica

Surface uniformity < 1 nm rms

- Scatter < 50 ppm
- Absorption < 2 ppm
- ROC matched < 3%</p>
- Internal mode Q's > 2 x 10⁶

		THE ACTE FIRTH
10.00 March 10		Note: - Cref, av_19-65,0 dec
N 5 (0	- 18 - 18	Zemike Coefficients zer Zenike 301:00004 w zer
		Zemike, 8 1 : 0.01393wv Zemike, 8 3 : 0.01984wv Zemike, 8 3 : 0.00431wv Zemike, 8 3 : 0.00431wv Zemike, 8 3 : 0.00164wv Zemike, 8 3 : 0.00164wv Zemike
Date: 12/04/1998 Time: 08:58:13 Wavelength: 1.084 um Pupil: 100.0% PV: 10.1607 nm RMMS: 1.2981 nm Rad df curv: 292.37 km	X Center: 288.00 Y Center: 239.50 Radius: 275.45 pix Terms Tilt Power Astig Filtenz: None Madks	Seidel Aberrations (8 Ter Coeff (per radius) Tit D0209wv Power 0.0086wv 0.002 Focus 0.0127wv Astig 0.0026wv 0.001 Coma 0.0059wv 0.002 Sa3 -0.0059wv 0.002

e: CSIRO meas Note: interpolated to LIGO grid Zernike Coefficients ze Zernike_3[3]: 0.00210wv Zer Zer 630 Zer Zemike_8[1]: 0.00077 wv zer 0.10 Zemike_8[2]: -0.00164 wv Zer Zer Zemike_8(3): 0.00210 wv 7-Zemike_8[4]: 0.00034 wv zer Zemike_8[5]: +0.00021 wv Zer Zer Zemike_8(6): 0.00033 wv zer Zemike_8[7]: 0.00124 wv Zer Zerniko_8(8): -0.00143 w/ Zer Seidel Aberrations (8 Ter X Center: 284.00 Date: 11/16/1998 Coeff (per radius) Time: 16:39.59 Y Center: 240.00 TIE 0.0041 wv Wavelength: 1.064 um Radius: 267.72 pix Power 0.0042 wv 0.001 Pupil: 100.0 % Terms: Tilt Power Astig Focus 0.0124 wv PV: 6.4471 nm Filters: None 0.000 0.0008 wv Astig RMS: 1.1005 nm Masks: 3.0 Sigma Mask 0.001 Coma 0.0038 wv Rad of curv: 570.70 km 0.003 Sa3 -0.0086 wv

Caltech data

CSIRO data

Core Optics

Suspension

Core Optics Installation and Alignment

LIGO

Laser

- Nd:YAG
- **1.064** μm
- Output power > 8W in TEM00 mode

Laser

stabilization

Provide actuator inputs for **Deliver pre-stabilized laser** further stabilization light to the 15-m mode cleaner Wideband **Frequency fluctuations** Tidal In-band power fluctuations • Power fluctuations at 25 MHz • Tidal Wideband 4 km 15m 10-Watt Laser Interferometer **PSL** IO 10^{-1} Hz/Hz^{1/2} 10⁻⁴ Hz/ Hz^{1/2} 10-7 Hz/ Hz^{1/2}

Prestabalized Laser

performance

- > 18,000 hours continuous operation
- Frequency and lock very robust
- TEM₀₀ power > 8 watts
- Non-TEM₀₀ power < 10%</p>

Astrophysical source upper limit groups

- Combined groups of experimenters and theorists
- Develop data analysis proposals

Purpose:

- Test the LIGO Data Analysis System
- Set upper limits using engineering data and first science run
- Publish first astrophysically interesting results from LIGO *Groups:*

Burst sources : Sam Finn Penn State, Peter Saulson Syracuse
Inspiral sources: Pat Brady Univ of Wisc., Gabi Gonzalez LSU
Periodic sources: Stuart Anderson Caltech, Michael Zucker MIT
Stochastic backgrd.: Joe Romano, UT Brownsville, Peter Fritschel MIT LIGO Advanced Inte

Advanced Interferometer Concept

- » Signal recycling
- » 180-watt laser
- » 40 kg Sapphire test masses
- » Larger beam size
- » Quadruple suspensions
- » Active seismic isolation
- » Active thermal correction
- » Output mode cleaner

LIGO

Projected Performance

The Gravitational-Wave Spectrum

Massive Black Holes in Merging Galaxies

Mission Concept

