

DETECTOR COMMISSIONING AND SEISMIC NOISE REMEDIATION

Rainer Weiss for Peter Fritschel and Dennis Coyne PAC Meeting December 5, 2002

LIGO COMMISSIONING

• Primary functions of the commissioning

- » After installation bring the interferometer, data acquisition and environmental monitoring system into operation
- » Improve the ability to hold lock and make it more robust
- » Reduce the noise in the interferometer
- » Determine correlations between interferometer and environment
- » Test the data acquisition system, diagnostic software and archiving
- » Train operators to acquire, run and diagnose the interferometer
- » Maintain technical communication between the Laboratory sites
- » Couple modeling with the diagnostic measurements

LIGO COMMISSIONING

Commissioning strategy

- » Progression: Hanford 2km->Livingston 4km -> Hanford 4km
- » Operate and test all in vacuum sub-systems as soon as possible after pumpdown reduce water load on beamtubes and risk of contamination
- » Operate interferometers even if sub-systems are incomplete -shakedown
- » Assess the limiting noise terms and Iterate

LIGO COMMISSIONING

• Sub-systems

- » Length and angle sensing and control
 - Control longitudinal degrees of freedom
 - Longitudinal and angular damping OSEMS
 - Optical lever monitor and active angular damping
 - Wavefront sensors for final alignment
- » Light frequency and amplitude control
 - nested frequency control loops:pre mode cleaner, reference cavity,
 - common mode of the interferometer laser to follow common mode
 - Intensity stabilization: around the laser, around mode cleaner
- » Light geometric control
 - Mode cleaner alignment and damping
 - Mode matching telescope stability and damping
 - Control of parasitic interferometers and scattered paths
- » Environment control : reduction in control dynamic range
 - Tidal servo common and differential mode
 - Microseismic feed forward system
 - Seismic noise reduction using external PZT controllers (Livingston)

Completed design modifications & additions

New suspension local sensors

- Initial sensors picked up scattered laser light, prevented high power operations
- New sensors developed in parallel with low power commissioning, now installed on all interferometers and tested at full power
- Suspended optic angular stabilization using optical levers
- Seismic noise attenuation at LLO
- New suspension controls
- Enhancements of real-time digital control systems

Stability improvements: reduction of angular fluctuations

- Angular fluctuations of core optics lead to difficulty in locking and large power fluctuations when locked
 - Fluctuations dominated by low-frequency isolation stack and pendulum modes
 - Suspension local sensors damp the pendulum modes, but have limited ability to reduce the rms motion
- Optical lever sensors:
 - initially meant as an alignment reference and to provide long term alignment information
 - they turn out to be much more stable than the suspended optic in the ~0.5-10 Hz band
 - wrap a servo around them to the suspended optic, with resonant gain peaks at the lowest modes
 - tradeoff: increased noise in GW band

LIGO-G020482-00-D

Optical lever servo results

LIGO-G020482-00-D

LIGO Laboratory

8

Seismic Situation at LLO (2)

□ Spiky seismic noise 1-3 Hz band

- Related to human activity mostly lumber industry, but also trains, highway traffic ... most likely to grow with time
- Coincident with stack resonances
- Precludes IFO locking during weekdays
- Dealing with the noise
 - Short term: Coil drivers with extended range
 - Increase maximum current to the coils, needed to acquire lock
 - Cannot reach ultimate LIGO noise floor
 - Long term: active external compensation system
 - 2 D.O.F. feedback stabilization of test mass supports (next talk)
 - 6 D.O.F. feedback stabilization of all suspended optic supports (next talk)
 - Feed forward reduction of microseism

μSeismic Feed-forward System (LLO)

- Standing ocean gravity waves driven by storms excite double frequency (DF) surface waves that traverse large distances on land
 - Amplitude: from fractions to several microns; frequency: ~0.15 Hz
 - > Wavelength: several kilometers \rightarrow LIGO arm length changes of several microns
- □ Seismic design provides an external fine actuation system (FAS)
 - Single DOF flexure design, ±90 µm range for each end (or mid) station BSC payload
 - Principally intended for tracking tidal arm stretching

□ Streckeisen STS-2 seismometer signals collected from each building

- filtered to produce arm length correction signals that are applied to the FAS, largely removing the microseism independently of global interferometer servos
- Filters are derived using system-identification tools, & represent a compromise between high performance at the microseism and minimal added noise elsewhere.

Noise Reduction during E6

- □ E6 was during a period of very high microseism, allowing a good test.
- Test mass RMS (0.03 0.5 Hz) reduced by 85%, so that this spectral band no longer dominates the control signal.

LIGO LHO 4k: Development ground for new suspension controls

□ Why a new suspension controls system?

Coil driver design limitation:

Acquisition currents: 100 – 300 ma Alignment currents: 10 – 30 ma

In-lock length control: ~3 ma

- Coil driver design made it impractical to reduce longitudinal control range after lock couldn't achieve the noise benefits of a smaller range
- Local sensing & damping electronics, and coil drivers (including LSC & ASC input conditioning) made all on one board
 - Made changes very difficult to implement; more modularity desired

Moved to a system with a digital processing core & more modular analog components

- Much easier to implement & change digital filtering; low freq filters don't require big C's
- Suspension signals digitally integrated w/ global length and alignment controls
- Alignment bias currents are generated and fed in, well filtered, independently of the feedback signals

LIGO Laboratory

Digital Controls screen example

Real-time digital filtering

Servos based on digital filtering a crucial part of improvements

- Can suppress features that account for rms fluctuations (typically f < 10 Hz)</p>
- Can filter out noise coupled into the gravity wave band
- Recent real-time code enhancements have made it much easier to implement complex digital filters
 - Reductions in processing & I/O time allow us to do more
 - > All digital feedback systems (LSC, ASC, DSC) now use a new 'generic filter module'

Noise reduction: interferometer frequency stabilization

- Feedback loop from the 'common mode' error signal error between the average arm length and the laser frequency – to the laser frequency
 - Provides the final level of frequency stabilization, after the prestabilization and mode cleaner stages
 - > Ultimately, need a stability of $3x10^{-7}$ Hz/rtHz at 150 Hz
 - Lock is acquired with feedback only to the end mirrors ...
 - the tricky operation is then to transfer the common mode feedback signal to the laser frequency, with multiple feedback paths

Status

- Operational on all 3 ifo's during S1
 - Removed all coherence between common and differential D.O.F.
- Frequency coupling measured on LHO 2k: 300:1 rejection ratio! (100 Hz)

Frequency stabilization feedback configuration

Ongoing subsystem integration

□ Laser power stabilization servo

- First stage operational, achieving a relative intensity noise of ~10⁻⁷/Hz^{1/2}
- > Second stage of stabilization in the works \Rightarrow 10⁻⁸/Hz^{1/2}

□ Wave-front sensor (WFS) based alignment system

- Optical lever servos reduce the fluctuations, but they don't find the right alignment point
- Wave-front sensors are referenced to the cavity axes, indicating the optimal alignment point for 10 degrees-of-freedom
- Being interferometric sensors, they have lower sensing noise than the optical levers \$\Rightarrow\$ reduce low-frequency noise
- Single sensors have functioned so far to align the end test masses, full system is being commissioned

Summary: what works

- □ Initial alignment: surveying good to ~25 μ radians
 - No searching for beams!
- □ Lasers: 2+ yrs of continuous operation
 - Prestabilized frequency noise meets requirement
- Seismic isolation stacks: isolate as designed
- Suspensions: thermal excitation of wire resonances observed
- □ Core optics quality
 - power recycling gains of ~40
 - Internal mode quality factors as expected (~10⁶)
- Interferometer lock acquisition: acquisition times within few minutes
- Global diagnostics system: now an indispensable tool
- Digital control systems:
 - Critical to noise & stability improvements
 - > Can deal with dynamic range limitations

Summary: major accomplishments

- □ First Science Run completed with good sensitivity and uptime
- □ Systems integration is nearing completion
- Significant noise improvements on all interferometers over the last year
- Stability improvements: optical lever stabilization, external preisolation
- □ Seismic isolation fine actuators used successfully to:
 - Compensate for tidal stretching of the arms
 - Compensate for the microseismic arm fluctuations
 - Attenuate ground noise at LLO
- □ Suspensions:
 - Mechanical robustness improved
 - > New improved control electronics implemented
- Operator training
 - > operators now an integral part of day-to-day commissioning

Summary: future plans

Plans for near term

- Recover full operation of LLO and LHO 2k interferometers following suspension controls upgrade
- Full wavefront sensor alignment control
 - Enable power increase at detection port
- Begin effort to improve the electronics infrastructure, EMI/RFI environment
- Focus on robustness & stability
 - Planning a longer stabilization period 'configuration freeze' prior to second science run (S2)
 - Need to increase duty cycle from ~60% to >90%
- Noise hunting …

SEISMIC NOISE REMEDIATION

Slides come from presentation made by Dennis Coyne at the November 2002 NSF Review

Issue

- Ground motion at LLO with the initial LIGO seismic isolation system makes it impossible to hold the interferometers locked reliably during the day
 - » Steady-state ambient noise is higher due to anthropogenic sources
 - » Transients, particularly from logging
- Wind induced seismic noise at LHO:
 - » exceeds locking threshold at ~25 mph, or 10% of the time
 - » Expect that up-conversion is a problem at significantly lower wind speeds & a large fraction of the time
- Upgrade is required to allow both reliable locking and to allow better noise performance while locked
 - » Need 90% duty cycle & lock durations > 40 hours
 - » Need to reduce noise in the control band (< 40 Hz) to permit a smaller suspension actuator authority & lower noise
 - » Suppression in the 1-3 Hz band is most important due to excitation of the lower stack modes (Q ~ 30)

LIGO-G020480-03-M

LIGO Laboratory

Scope

• Retrofit design

- » Original design included expansion capability for active control
- » No commercially available systems with acceptable performance
- » Accelerate the existing advanced LIGO R&D effort for an active pre-isolator
 - An LSC effort scientifically led by Joe Giaime (LSU) and Brian Lantz (Stanford)
 - Digital servo controls (flexibility & graceful degradation under failure)
 - Two alternative actuator designs
- » Install without disturbing in-situ optics alignment
- » BSC & HAM chambers
- » Prove performance with full scale prototypes at LASTI
- Active Isolation with the Fine Actuation Systems (FAS) on Test Mass chambers
 - » Use of the FAS actuator for active control is known as PEPI: Piezo-electric External Pre-Isolation
 - » PEPI is an interim solution for LLO; installed for S1
 - » PEPI is the planned solution for LHO
- Number of retrofit systems:
 - » All chambers with suspended optics at LLO (8 systems)
 - » Addition of PEPI systems to Test Mass and Mode Cleaner chambers at LHO (6 systems per interferometer)

LIGO-G020480-03-M

LIGO Laboratory

External Pre-Isolator performance requirements

Basic tenets:

The pre-isolator must not increase the present noise in the GW-band, and

Must bring the day LLO environment to the level of the LHO night environment.

1 month 100 seconds	10 microns pk-pk 1 micron pk-pk	Presently observed stability of system
0.16 Hz	4e-7 m/√Hz	To original seismic model
1 Hz	1e-9 m/√Hz	Hanford night-time
10 Hz	4e-10 m/√Hz	spectrum in 1-3 Hz band 95% of the time
15 Hz 30 Hz	2e-10 m/√Hz 6e-11 m/√Hz	Not to exceed presently observed spectrum
50 Hz and higher	2e-11 m/√Hz	1

Daily variability – and requirement

red=livingston, green=hanford

Initial Vibration Isolation Systems

- Reduce in-band seismic motion by 4 6 orders of magnitude **》**
- Little or no attenuation below 10Hz; amplification at stack mode resonances **》**
- Large range actuation for initial alignment and drift compensation **》**
- Quiet actuation to correct for Earth tides and microseism at 0.15 Hz during **》** observation

HAM Chamber

BSC Chamber

LIGO-G020480-03-M

LIGO Laboratory

Seismic System Performance

LIGO-G020480-03-M

LIGO Laboratory

LIGO Piezo-electric External Pre-Isolator (PEPI)

- Single (longitudinal) degree of freedom isolation
 - Employs Fine Actuation System on End Test Mass Chambers (also used for Tidal and Microseismic control)
 - Added to Input Test Masses at LLO for the S1 Run
 - Baseline approach for LHO for S3

Actuators for an External Pre-Isolation (EPI) System

- Large range (300 microns p-p) required for tidal & microseismic correction
 - » Goal of 1 mm for coarse positioning/alignment
 - » Piezo-electric actuation may not be suitable
- Quiet Hydraulic Actuators
 - » Hydraulic Wheatstone bridge
 - » Used for precision diamond turning vibration isolation
 - » High range, high stiffness, high bandwidth, high velocity
 - » Developmental system (not commercially available)
- Electro-magnetic actuators
 - » Different actuator (force instead of displacement)
 - » Increased robustness of EPI solution a second path
 - » Familiar technology (in contrast to quiet hydraulics)
 - » Reduced risk of contamination
 - » Less complexity in power supply
 - » Same performance requirements, mechanical superstructure, sensors
 - » Concern regarding EM coupling to the magnets on the suspended optics

LIGO

Hydraulic External Pre-Isolators (HEPI)

- Working fluid is high-viscosity fluid (glycerin/ethanol or mineral oil)
- Bellows hydraulic pistons apply force without sliding friction, moving seals
- Laminar-flow differential valves control forces
- Stabilized "power supply" is remote hydraulic pump with fluid-equivalent "RC" pressure filtering
- Technology adapted from precision machine tool applications

LIGO MEPI Installed on HAM at LASTI

- Alternative to the developmental hydraulic actuator
- Uses commercially available voice-coil actuator
- 'Pin-compatible' mechanically
- Simpler electronics
- 'Soft' mechanical back impedance

Status & Decision Points

• MEPI

- » Installed at LASTI & under Test
- » Interaction of HAM structural support modes with the control system may limit performance, add control complexity or cause us to consider structural modifications/additions
- » Initial MEPI/HAM Chamber results are promising; Hope to demonstrate control to required performance in the next 2 months

HEPI

- » 3rd generation hydraulic actuator in test on the Stanford test stand
- » Pump station tests at CIT have demonstrated pressure noise performance requirements
- » Installation at LASTI to start in 2 weeks
- » Compliance of the BSC pier may likewise limit gain-bandwidth and performance
- » Initial test results are expected by early December
- Design Review & Long-Lead Procurement Review, Jan, 2003
 - » After prototype installation & some preliminary experience will decide whether to go forward with the hydraulic actuator or the electro-magnetic actuator
 - » Commissioning will continue to improve performance and transition from dSpace to VME based controllers
- Installation start at LLO, April, 2003
 - » Following the S2 run

LIGO Laboratory