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Abstract

Gravitational wave science should transform in this decade from a study of what has not been
seen to a full-fledged field of astronomy in which detected signals reveal the nature of cataclysmic
events and exotic objects. The LIGO Scientific Collaboration and Virgo Collaboration have re-
cently completed joint data runs of unprecedented sensitivities to gravitational waves. So far, no
gravitational radiation has been seen (although data mining continues). It seems likely that the
first detection will come from 2nd-generation LIGO and Virgo interferometers now being installed.
These new detectors are expected to detect ∼40 coalescences of neutron star binary systems per
year at full sensitivity. At the same time, research and development continues on 3rd-generation
underground interferometers and on space-based interferometers. In parallel there is a vigorous
effort in the radio pulsar community to detect ∼several-nHz gravitational waves via the timing
residuals from an array of pulsars at different locations in the sky. As the dawn of gravitational
wave astronomy nears, this review, intended primarily for interested particle and nuclear physi-
cists, describes what we have learned to date and the prospects for direct discovery of gravitational
waves.

1 Introduction

Einstein’s General Theory of Relativity (hereafter: general relativity) predicts the existence of grav-
itational waves, disturbances of space-time itself that propagate at the speed of light and have two
transverse quadrupolar polarizations [1]. Scientists have searched for these waves for several decades
without success, but with the ongoing installation and commissioning of Advanced LIGO and Advanced
Virgo detectors, direct discovery of gravitational waves appears to be only a few years away (or perhaps
sooner if deep mining of initial LIGO and Virgo data succeeds). There is also a possibility that radio
astronomers will succeed first in direct detection of gravitational waves – at extremely low frequencies
(∼ several nHz) via their influence on apparent pulsar timing. This review article is intended for an
audience of nuclear and particle physicists already conversant in special relativity and electrodynamics
who want to understand why gravitational waves are interesting, what technical and analytic methods
are used in direct searches for this predicted radiation, and what the prospects are for discovery in this
decade. Particular attention is given to the evolving data analysis techniques in this rapidly developing
field.

The search for gravitational waves has many motivations. First is simple, fundamental scientific
curiosity about new phenomena. More prosaically, one can use gravitational radiation to test general
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relativity. For example, one can test the predicted transverse and quadrupolar nature of the radiation,
and one can test whether or not the radiation travels at the speed of light, as one would expect
for a massless graviton. One can also directly probe highly relativistic phenomena, such as black-
hole formation. Perhaps more intriguing, though, is the entirely new view one gains of the universe.
Gravitational waves cannot be appreciably absorbed by dust or stellar envelopes, and most detectable
sources are some of the most interesting and least understood objects in the universe. More generally,
gravitational wave astronomy opens up an entirely new non-electromagnetic spectrum. Astronomy has
found many surprises since the mid 20th-century, as non-optical light bands have been explored, from
the radio to gamma rays. New surprises likely await in the exploration of the gravitational spectrum.
We do not yet know the sky distribution of detectable sources, but it is likely to include both isotropic
components from sources at cosmological distances and local components dominated by our own galactic
plane.

Strong indirect evidence already exists for gravitational wave emission. The famous Hulse-Taylor
binary system, consisting of an observed pulsar with 17-Hz radio emission in an 8-hour orbit with an
unseen neutron star companion, has shown a small but unmistakable quadratic decrease in orbital period
(∼40 seconds over 30 years), in remarkably good agreement with expectation from gravitational wave
energy loss [2]. The 1993 Nobel Prize in Physics was awarded to Taylor and Hulse for the discovery
and use of the PSR B1913+16 system to test general relativity, in particular, for the verification
of an orbital decay rate consistent with that expected from gravitational wave energy emission. Its
presumed gravitational wave emission frequency (∼70 µHz) is far too low to be observed directly by
present gravitational wave detectors, but if we were to wait about 300 million years, the system would
eventually spiral into a spectacular coalescence easily “heard” with present gravitational wave detectors.

Perhaps our best hope for gravitational wave discovery lies with corresponding binary systems in the
numerous galaxies far away from us, but there are large uncertainties in estimated coalescence rates for
compact binary systems containing neutron stars (NS) and/or black holes (BH). For example, a recent
compilation of rates [3] estimates a “plausible” range from 2 × 10−4 to 0.2 per year for initial LIGO
detection of a NS-NS coalescence, 7× 10−5 to 0.1 per year for a NS-BH coalescence, and 2× 10−4 to 0.5
per year for BH-BH coalescence, assuming 1.4-M� NS and ∼10-M� BH (M� ≡ solar mass = 2.0× 1030

kg). As discussed below, these predicted rates increase dramatically for 2nd-generation detectors. For
example, a realistic estimate for Advanced LIGO at full sensitivity is 40 detected NS-NS coalescences
per year. Estimates for NS-BH and BH-BH inspiral rates have especially large uncertainties [3], but such
systems could be observed at farther distances because their larger masses give rise to large gravitational
wave amplitudes in the final stages of the inspiral. Similarly, the waveform shapes for inspiraling binary
systems are thought to be well understood for systems with two neutron star systems, while larger
uncertainties apply to systems with one or two black holes. Nonetheless, there has been recent dramatic
progress in numerical-relativity calculations of expected waveforms in these complicated systems.

Other candidate transient sources of gravitational waves include supernovae and gamma ray bursts
(some of which may well be coalescing binary systems). If we are fortunate, electromagnetic transients
will be seen simultaneously by other astronomers, allowing more confident gravitational wave detection
with lower signal-to-noise ratio (SNR) and yielding greater understanding of the sources. Potential non-
transient gravitational wave sources include rapidly spinning neutron stars in our own galaxy, emitting
long-lived continuous waves, or a cosmological background of stochastic gravitational waves, analogous
to the cosmic microwave background radiation. Results from searches for both transient and long-lived
gravitational-wave sources will be discussed below.

In the following review, the primary focus will be upon current ground-based gravitational wave
interferometers and on 2nd-generation interferometers now under construction, with brief mention of
future, 3rd-generation underground interferometers. Attention will also be given to searches for ex-
tremely low-frequency waves via pulsar timing. Longer-term searches using space-based interferometers
will be discussed only briefly. There will be no discussion of attempts to detect gravitational waves
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indirectly via their primordial imprint upon the cosmic microwave background [4] or of nascent ideas
for direct detection based upon matter-wave interferometry [5].

In addition to the references cited below for specific topics, there exist many informative books and
review articles. Comprehensive texts specific to gravitational waves include Saulson [6], Maggiore [7]
Creighton & Anderson [8], and Jaranowski and Krolák [9]. Texts on gravitation and general relativ-
ity with treatments of gravitational radiation include (among others) Hartle [10], Misner, Thorne &
Wheeler [11], and Schutz [12]. Early influential review articles concerning gravitational waves include
Tyson & Giffard [13], Thorne [1] and the collection of articles in Blair [14]. Reviews within the last
few years include Sathyaprakash & Schutz (2009) [15], Pitkin et al. (2011) [16], and Freise & Strain
(2010) [17]. A very recent volume (2012) contains detailed articles on plans for 2nd-generation and
3rd-generation detectors [18].

One technical note: to minimize confusion, physical units in the following will be S.I. primarily, with
occasional cgs conversions shown where useful (apologies in advance to those who prefer streamlined
equations with G = c = h̄ = kB ≡ 1).

2 Gravitational Wave Sources

2.1 Gravitational wave generation and properties

Strictly speaking, gravitational waves which describe fluctuations in the curvature of space cannot be
rigorously separated from other curvature caused, for example, by a nearby star. Nonetheless, one
can usefully (and accurately) apply a short-wave formalism to separate rapid variations from a slowly
varying background [1, 19] by taking the background as an average over many wavelengths of the wave.

Measuring curvature requires two or more separated test objects. A classic example is that of an
astronaut’s observations while orbiting the Earth in a windowless spacecraft. Observing the slow relative
drift of two test masses placed initially at rest w.r.t. each other at a nominal initial separation allows the
astronaut to detect the tidal influence of the Earth upon local space-time. The same principle applies to
detecting a gravitational wave; in the case of the LIGO interferometers, for example, one measures via
light propagation time the influence of gravitational waves on pairs of test masses (mirrors) separated
by 4 km.

The following brief and simplified summary of the generation and propagation of gravitational
waves borrows heavily from the treatment of the Hartle text [10] in which analogs with electromagnetic
radiation are made manifest.

First, let’s review some fundamental concepts from general relativity. The differential line element
ds at space-time point x has the form:

ds2 = gαβ(x) dxα dxβ (1)

where gαβ is the symmetric metric tensor, and repeated indices imply summation. Two examples are a
flat Cartesian-coordinate metric (α = (t, x, y, z)):

gCart.
αβ (x) =




−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 (2)

and a curved, spherical-coordinate Schwarzschild metric (α = (t, r, θ, φ)) exterior to a spherically sym-
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metric mass distribution of total mass M :

gSchwarz.
αβ (x) =




−(1− 2GM/c2r) 0 0 0
0 (1 + 2GM/c2r)−1 0 0
0 0 r2 0
0 0 0 r2 sin2(θ)


 . (3)

One way to quantify the curvature of a metric is via the covariant equation of motion for a test particle:

d2xα

dτ 2
= −Γαβγ

dxβ

dτ

dxγ

dτ
(4)

where τ is proper time and Γαβγ is the Christoffel symbol defined by

gαδ Γδβγ =
1

2

(
∂gαβ
∂xγ

+
∂gαγ
∂xβ

+
∂gβγ
∂xα

)
(5)

and from which one can define the Riemann curvature tensor:

Rα
βγδ =

∂Γαβδ
∂xγ

−
∂Γαβγ
∂xδ

+ ΓαγεΓ
ε
βδ − ΓαδεΓ

ε
βγ . (6)

Contracting two of the indices of the Riemann tensor leads to the Ricci tensor:

Rβδ = Rα
βαδ , (7)

which appears in the famous Einstein Equation:

Rαβ −
1

2
gαβR =

8πG

c4
Tαβ, (8)

where Tαβ is the stress-energy tensor which can be regarded as having the following qualitative form:

Tαβ =




Energy Density 1
c
(Energy Flux)

1
c
(Momentum Stress
Density) Tensor



. (9)

Specifically, T tt(x) is the local energy density, T ti(x) is the flux of energy in the xi direction, T it is the
density of momentum in the xi direction (note: T ti = T it), and T ij is the ith component of the force
per unit area exerted across a surface with normal in direction xj. Diagonal elements T ii represent
pressure components, and off-diagonal elements represent shear stresses. Local energy and momentum
conservation (in flat space-time) can be represented by the equation:

∂Tαβ
∂xβ

= 0 . (10)

The Einstein Equation quantifies how energy density leads to curvature and, in turn, how curvature
influences energy density. Generation of gravitational waves is implicit in these equations. To see why,
consider a region far from a source, a nearly flat region where the gravitational wave perturbs a flat
Cartesian metric by only a small amount hαβ:

gαβ(x) = ηαβ + hαβ(x), (11)
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Figure 1: Illustration of the effects of a (strong!) gravitational wave passage upon a ring of free test
masses.

where ηαβ is the Minkowsi metric given in equation 2, and |hαβ| << 1. In this linearized gravity, the
left side of the Einstein Equation can be greatly simplified by keeping only first order terms in hαβ and
applying the Lorenz gauge condition (analogous to that of electrodynamics):

∂βh
β
α(x)− 1

2
∂αh

β
β(x) = 0. (12)

In vacuum (Tαβ = 0), one obtains the homogeneous wave equation:

2hαβ(x) = 0 , (13)

where 2 ≡ − 1
c2

∂2

∂t2
+ ∇2. This equation has solutions with familiar space and time dependence, but

describes a tensor perturbation. For example, a solution with fixed wave vector ~k can be written as

hαβ(x) = aαβ e
i[~k·~x−ωt] (14)

where aαβ is a symmetric 4×4 matrix of constants and where ω = kc. Imposing the gauge condition
above and additional gauge freedom [10] (transverse-traceless gauge) and choosing the z axis to lie along
~k leads to the relatively simple form:

hαβ(x) =




0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0


 ei[kz−ωt] , (15)

where h+ and h× are constant amplitudes. For illustration, figure 1 depicts the quadrupolar nature of
these two polarizations (“+”, “×”) as gravitational waves propagating along the z-axis impinge upon
a ring of test masses in free-fall in the x-y plane.

The relation of gravitational waves to their source is found from the inhomogeneous Einstein Equa-
tion [equation (8)] where, again, we assume weak amplitudes in a nearly flat space-time. Choosing
Cartesian spatial coordinates and the transverse-traceless gauge, one has an inhomogeneous wave equa-
tion:

2hαβ(x) = −16π G

c4
Tαβ, (16)

which is analogous to the wave equation for relativistic electrodynamic fields:

2Aα = −µ0 J
α , (17)

where Aα = (Φ/c, ~A) contains the scalar and vector potential functions and where Jα = (cρ, ~J) contains
the electric scalar charge and current density. As for electrodynamics, Green function formalism can be
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fruitfully applied to derive solutions. As a reminder, for example, the electrodynamic vector potential
solution can be written as an integral over a source volume: [20]

~A(t, ~x) =
µ0

4π

∫
d3x′

[ ~J(~x ′, t′)]ret

|x− x′| , (18)

where [...]ret indicates evaluation at the retarded time defined by t′ ≡ t − |~x − ~x′|/c. Similarly, the
solution to equation (16) can be written as

hαβ(t, ~x) =
4G

c4

∫
d3x′

[Tαβ(t′, ~x′)]ret

|x− x′| . (19)

To gain an intuitive understanding of this solution, consider a source that varies harmonically with
time with characteristic angular frequency ω and wavelength λ and make two approximations: 1)
the long-wavelength approximation such that λ � Rsource and 2) the distant-source approximation
r � Rsource. Here Rsource is the outermost radius of the source, and r is the distance from the observer
to the source. In this limit (weak gravitational waves), the above solution for hαβ reduces to

hαβ ≈ 4G

rc4

∫
d3x′ Tαβ(t− r/c, ~x′). (20)

Applying local energy/momentum conservation [see equation (10)] and integrating by parts (see Har-
tle [10] for details) leads to

∫
d3xT ij(x) =

1

2

1

c2

d2

dt2

[∫
d3x xixj T tt(x)

]
. (21)

If one further restricts the source to one dominated by its rest-mass density µ (non-relativistic internal
velocities), then

hij(t, ~x) ≈ 2G

rc4

d2

dt2
[
I ij(t− r/c)

]
, (22)

where I ij is the 2nd mass moment:

I ij ≡
∫
d3xµ(t, ~x)xixj. (23)

Hence, to lowest order, gravitational radiation is a quadrupolar phenomenon, in contrast to electrody-
namics, for which electric dipole and magnetic dipole radiation are supported. As monopole electro-
magnetic radiation is prohibited by electric charge conservation and monopole gravitational radiation
is prohibited by energy conservation, electric and magnetic dipole gravitational radiation are prohib-
ited by translational momentum and angular momentum conservation, respectively. Note that, as for
electrodynamics, gravitational radiation intensity is not spherically symmetric (isotropic) about the
source.

The fact that the constant 2G/c4 in front of equation (22) is so small in SI units (1.7 × 10−44

s2·kg−1·m−1) is sobering when contemplating the detection of gravitational radiation. The source
quadrupole’s 2nd time derivative must be enormous to give detectable effects far from the source,
implying large masses (∼M�) with high characteristic velocities.

As a classic illustration from Saulson [6], consider a pair of 1.4-M� neutron stars 15 Mpc away
(e.g., near the center of the Virgo galactic cluster) in a circular orbit of 20-km radius (with coalescence
imminent!) which have an orbital frequency of 400 Hz and emit gravitational waves at 800 Hz with an
amplitude (Newtonian, point mass approximation):

h ≈ 10−21

(r/15 Mpc)
, (24)
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where h ∼ 10−21 is a characteristic amplitude for transient sources detectable by the LIGO and Virgo
detectors described below.

Qualitatively, sensitive gravitational wave detectors have large characteristic length scales L (4 km
for LIGO, 3 km for Virgo) in order to gain precision on the dimensionless strain ∆L/L induced by a
gravitational wave, for a given precision on ∆L determined by instrumental and environmental noise.

It is useful to consider the energy flux implicit in gravitational waves. The energy required to
distort space is analogous to that required to induce an elastic deformation of steel, but to a much
greater degree, which is to say, space is extremely stiff, as quantified below. Defining gravitational
wave energy flux is most straightforward in a spatial volume encompassing many wavelengths, but
small in dimension compared to the characteristic radius of curvature of the background space. In that
regime, for example, the energy flux of a sinusoidal, linearly polarized wave of amplitude h+ and angular
frequency ω is [10]

F =
1

32π

c3

G
h2

+ω
2 (25)

For a 100-Hz sinusoidal wave of amplitude h+ = 10−21, one obtains a flux of 3.3 mW·m−2 (3.3
erg·s−1·cm−2). As one comparison, the total radiated energy flux in the 2-10 keV X-ray band from
the Crab nebula is 2.4× 10−11 W·m−2 (2.4× 10−8 erg·s−1·cm−2). As another comparison, the radiation
energy flux bathing the earth from the Sun is about 1400 W/m2. Hence during the brief moment when
the waves of a coalescing binary neutron star system in the Virgo cluster pass the Earth, the implicit
energy flux is more than a millionth that from the Sun! As we shall see below, however, detecting the
passage of this energy flux is a formidable experimental challenge.

A general result [10] for the total energy luminosity for waves in the radiation zone depends on the
third time derivative of a modified inertia tensor I ij:

L =
G

5 c5

〈...
Ī ij

...
Ī
ij
〉
, (26)

where <> represents an average over several cycles, and Ī is the traceless quadrupole tensor:

Ī ij ≡ I ij − 1

3
δijIkk . (27)

Before turning to likely sources of detectable gravitational radiation, it is useful to consider additional
comparisons with electromagnetic radiation:

• Most naturally emitted electromagnetic radiation is an incoherent superposition of light from
sources much larger than the light’s wavelength, while in contrast, gravitational radiation likely
to be detectable (< few kHz) comes from sources with sizes comparable to the wavelength. Hence
the signal reflects coherent motion of extremely massive objects.

• Because the detectable gravitational wave frequencies are so low, graviton energies (h̄ω) are (pre-
sumably) tiny, making detection of individual quanta even more difficult than the already daunting
challenge of detecting classical radiation.

• In passing through ordinary matter, gravitational radiation suffers no more than a tiny absorption
or scattering (although, like light, it is subject to gravitational lensing by large masses). As a
result, gravitational waves can carry to us information about violent processes, for example, deep
within stars or behind dust clouds. As discussed below in the context of detection, even neutrinos
have large scattering cross sections, in comparison.

• It appears to be utterly impractical with current technology to detect manmade gravitational
waves. To borrow another classic example from Saulson [6], imagine a dumbbell consisting of
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Figure 2: Rotating dumbbell model for a system with a changing quadrupole moment

two 1-ton compact masses with their centers separated by 2 meters and spinning at 1 kHz about
a line bisecting and orthogonal to their symmetry axis, as shown in figure 2. For an observer
300-km away (in the radiation zone), one obtains an amplitude of h ∼ 10−38 (setting aside the
impracticality of such fast dumbbell rotation).

Finally, it bears emphasizing that the above linearized-gravity approximations are useful for qualita-
tive understanding, and in many cases of interest, should be accurate. But for highly relativistic sources,
such as the merger of two rapidly spinning black holes, detailed numerical calculation is necessary. Even
for mildly relativistic systems, post-Newtonian perturbative approaches (discussed in section 4.2.1) are
necessary.

2.2 Overview of likely sources

As will be discussed in more detail in section 4.1, for purposes of detection, one can usefully classify
sources in four broad categories [21]: 1) short-lived and well defined, for which coalescence of a compact
binary system is the canonical example; 2) short-lived and a priori poorly known, for which a supernova
explosion is the canonical example; 3) long-lived and well defined, e.g., continuous waves from spinning
neutron stars; and 4) long-lived and stochastic, e.g., primordial gravitational waves from the Big Bang.
For existing and upcoming terrestrial detectors, the most promising category is the first. Detectable
event rates for compact binary coalescence (CBC) can be estimated with the greatest confidence and
imply highly likely discovery by Advanced LIGO and Virgo detectors.

For future spaced-based detectors, which can probe to lower frequencies, the pre-coalescence phase
of galactic binaries NS-NS is accessible, at the same time that coalescence of binary super-massive black
holes (SMBHs), e.g., from galaxy mergers should be detectable [15]. Similarly, pulsar timing arrays
can potentially detect a stochastic astrophysical background from the superposition of cosmologically
distant SMBH binary systems [22] at still lower frequencies (∼nHz).

2.3 Compact binary coalescence

Although binary star systems are common in our galaxy, only a tiny fraction experience an evolution
that arrives at two compact objects in an orbit tight enough to lead to compact binary coalescence
(CBC) in a Hubble time. That end results requires both stars to be massive enough to undergo collapse
to a compact object without destroying its companion, without shedding so much mass that the orbit
is no longer bound, and without undergoing a “birth kick” that disrupts the bound orbit.

Two distinct approaches (but with some common observational constraints) have been used to
estimate the average rates at which NS-NS coalescences occur in the local region of the Universe. The
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Source RPlausible
Low RRealistic RPlausible

High

NS-NS 1 100 1000
NS-BH 0.05 3 100
BH-BH 0.01 0.4 30

Table 1: Summary of estimated coalescence rates (MWEG−1 Myr−1) for NS-NS, NS-BH and BH-BH
binary systems from the compilations in ref. [3].

first method [24, 23] is based on a priori calculations of binary star evolution, including the evolution
of each star in the presence of the other, where a common envelope phase is not unusual. This general
approach can be used to estimate rates for NS-BH and BH-BH coalescence, too.

The second estimation method [25, 26] is based largely on extrapolation from observed double-
neutron-star systems in our local galaxy, albeit systems far from coalescence. Only a handful of binary
systems with two neutron stars are known, including the Hulse-Taylor binary [2] mentioned above and
the double-pulsar system (J0737-3039) discovered in 2003 [27].

It is beyond the scope of this article to describe in detail these calculations or their assumptions. A
recent joint publication [3] by the LIGO Scientific Collaboration and Virgo collaboration summarizes
the recent literature and provides convenient tables of both estimated coalescence rates and resulting
expected coalescence detection rates for initial and advanced detectors.

In summary, these estimates for NS-NS coalescence yield “realistic” rates of once every 104 years
in a galaxy the size of the Milky Way (“Milky Way Equivalent Galaxy” - MWEG). with “plausible”
rates ranging from once every 106 years to once every 103 years. The corresponding rates for a NS-BH
system are once per 300,000 years (“realistic”), with a plausible range from once per 20 million years
to once per 104 years. For a BH-BH system (stellar masses), the corresponding rates are once per 2.5
million years (realistic) with a plausible range from once per 100 million years to once per 30,000 years.
Table 1 summarizes these estimates more compactly in units of MWEG−1 Myr−1. An alternative rate
unit is in terms of coalescences per Mpc3 per Myr. A rough conversion rate (for the local Universe) is
0.01 MWEG/Mpc3, giving estimated realistic rates of 1, 0.03 and 0.005 coalescences Mpc−3·Myr−1 for
NS-NS, NS-BH and BH-BH, respectively [3].

Corroborating evidence for these estimates comes from the rate of observed short hard gamma ray
bursts (GRBs). While long soft GRBs (>2 s) are thought to arise primarily from the death of massive
stars, short hard GRBs are widely thought to arise primarily from coalescence of NS-NS (or NS-BH)
systems. Although the large correction for average beaming effects remains uncertain, the short hard
GRB rate per unit volume appears to be roughly consistent with the above range of estimates [28] for
a variety of galactic evolution models.

Conversion of coalescence rates into detected coalescence rates depends, of course, on details of
frequency-dependent detector sensitivity and on averaging over stellar orientations and sky positions.
Resulting estimated detection rates for 1st- and 2nd-generation interferometers will be presented in
sections 4.2 and 5.

Detection of CBC events will provide an unprecedented view of strong-field gravity and offer de-
manding tests of general relativity, especially in the case of detection by multiple detectors, allowing
disentanglement of waveform polarization. The coalescence of two compact massive objects (neutron
stars and black holes) into a single final black hole can be divided into three reasonably distinct stages:
inspiral, merger and ringdown. During the inspiral stage, analytic expressions (perturbative post-
Newtonian approximations) for gravitational waveforms are expected to be accurate. In the merger
stage, strongly relativistic effects require numerical relativity calculations. In the ringdown of the final
resulting black hole, however, simplicity is once again expected.
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The inspiral stage lends itself to a natural perturbative approach [29]. To illustrate with a simple,
concrete example, consider two stars of equal mass M in an circular orbit of instantaneous radius R(t)
and angular velocity ω(t) (assumed slowly changing), where the stars are treated as point masses far
enough apart that tidal effects can be neglected. From simple Newtonian mechanics, we obtain Kepler’s
3rd Law:

Mω2R =
GM2

(2R)2
=⇒ ω2 =

GM

4R3
(28)

The total energy of this system (potental + kinetic) is

E = −GM
2

4R
, (29)

and the decrease in E with time is
dE

dt
=

GM2

4R2

dR

dt
, (30)

as the orbit shrinks.
For convenience define the origin at the orbit’s center and the x−y plane to coincide with the orbital

plane, with one star at x1 = R at time t = 0:

x1(t) = −x2(t) = R cos(ωt); y1(t) = −y2(t) = R sin(ωt); z1 = z2 = 0. (31)

from which one obtains [using equations (23) and (27)]:

...
Ī = MR2 (2ω)3




sin(2ωt) − cos(2ωt) 0
− cos(2ωt) − sin(2ωt) 0

0 0 0


 , (32)

and a total radiated luminosity [using equation (26)]:

L =
128

5

GM2

c5
R4ω6. (33)

Setting dE/dt = −L and using equation (28), one obtains a differential equation for R:

R3 dR

dt
= −8

5

G3M3

c5
. (34)

Integrating from a present time t to a future coalescence time tcoal when R → 0, one finds the orbital
radius

R(t) =

[
32

5

G3M3

c5
(tcoal − t)

] 1
4

, (35)

from which the gravitational wave frequency [fGW = 2ω/2π] is derived (via equation 28):

fGW =
1

8π

[
2 · 53

] 1
8

[
c3

GM

]5/8
1

(tcoal − t)
3
8

. (36)

As expected, the frequency diverges as t → tcoal. Now consider the amplitude h0 of the circularly
polarized wave observed a distance r away along the orbital axis of rotation. From equation (22), one
has:

h0(t) =
1

r

[
5G5M5

2 c11

] 1
4 1

(tcoal − t)
1
4

. (37)
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Substituting sample M and r values from the binary neutron star example in section 2.1 and defining
the time remaining until coalescence detection as τ , one has for the gravitational wave frequency and
amplitude:

fGW(t) = (1.9 Hz)

(
1.4M�
M

) 5
8
(

1 day

τ

) 3
8

(38)

and

h0(t) = (1.7× 10−23)

(
15 Mpc

r

)(
1 day

τ

) 1
4
(

M

1.4M�

)5/4

. (39)

The increase in frequency with τ−
3
8 and in amplitude with τ−

1
4 leads to a characteristic “chirp” in the

gravitational waveform. Note that if the distance to the source is known, the common stellar mass
of this system can be derived from either the frequency or amplitude evolution. Expressions for an
unequal-mass binary will be presented in section 4.2.

Thus the early phases of the inspiral stage should provide a well understood post-Newtonian system,
from which stellar masses (and perhaps spins) can be determined. With these parameters determined
(to some precision), one can then make detailed comparisons of observations in the merger stage with
numerical predictions for those parameters. The ringdown mode frequencies and damping times are
primarily governed by the total mass and spin of the final black hole, allowing clean and analytic
comparisons to the inspiral stage, largely independent of the merger uncertainties.

There has been a flurry of work in the last two decades to improve the numerical relativity cal-
culations, to permit detailed comparisons between observation and theory during the difficult merger
phase. A number of technical breakthroughs [30, 31, 32] have led to dramatic progress in this area. In
parallel, there is a coordinated effort (NINJA = Numerical INJection Analysis [33]) to produce fam-
ilies of detailed waveform templates and evaluate algorithms for detecting them, not only for making
comparisons after detection, but also to increase the chances of detection via matched-filter algorithms.

Coalescences involving neutron stars offer the potential for probing the neutron star equation of
state via distortions of the detected waveform away from that expected for two point masses, because
of tidal disruption of one or both stars [34]. The effects are expected to be small, however, and their
detection dependent on the detector sensitivity at the highest frequencies in the detector bands.

Very distant coalescences also offer interesting cosmological measurements via their role as “standard
candles”, analogous to Type 1A supernovae [35]. Since the masses of the system can be determined
from the waveform shape (assuming polarization has been determined via coincidence detection in
multiple detectors), the luminosity distance to the system can be determined (assuming the correctness
of general relativity). If the redshift of the source’s host galaxy can be determined from electromagnetic
measurements, e.g., simultaneous detection of a short GRB or of an afterglow, then one obtains an
independent measure of the Hubble constant.

Note, however, that the gravitational waves are subject to the same redshift as electromagnetic
radiation, which leads to an ambiguity in determining the redshift directly from the gravitational
waveform. For example, the reduction of the wave amplitude due to luminosity distance (correlated
to redshift) can be compensated by changes to the assumed rest-frame mass of the system. Recently
it has been appreciated, however, that for coalescences involving a neutron star, the tidal disruption
can provide an independent clue to the stellar masses (in their local frame), allowing the use of the
standard candle even in the absence of a known host galaxy [36]. Similarly, the statistical distribution
of neutron star masses provides another means to calibrate the standard candle [37]. And if the host
galaxy is known, then one has a valuable cross check on the relation between luminosity distance and
redshift distance.

While stellar spin is thought to be unimportant in searches for NS-NS inspirals, it can be important
for coalescences involving one or two black holes, for which high spin can create significant waveform
distortions over a spinless assumption, where the maximum allowed angular momentum in general
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relativity is GM2
BH/c for a black hole of mass MBH [10]. Both amplitude and phase can be modulated,

making the parameter space over which one must search much larger than for the NS-NS case, as
discussed below in section 4.2.

2.4 Bursts

Gravitational wave bursts customarily refer to transients of poorly known or unknown phase evolution.
Although the algorithms used to search for bursts (described in section 4.3) are sensitive to high-
SNR, well predicted waveforms such as from NS-NS coalescence, they are necessarily less sensitive
than matched-filter approaches, where known phase evolution can be exploited. More generic transient
algorithms must be used for burst sources, such as supernovae, because of uncertain dynamics in these
violent processes and because of uncertain but almost certainly varying initial stellar conditions.

As a reminder, a spherically symmetric explosion (or implosion) does not lead to gravitational waves
in general relativity (no monopole term). To be detected via gravitational waves then, a supernova
presumably needs to exhibit some asymmetry. The fact that many pulsars formed in supernovae have
large measured speeds relative to their neighbors (high “birth kicks”) [38] strongly suggests that some
supernovae do exhibit substantial non-spherical motion, perhaps as a result of dynamical instabilities
in rapidly rotating, massive progenitor stars. One recently appreciated mechanism for potentially
strong gravitational wave emission during core-collapse supernovae is hydrodynamical oscillation of the
protoneutron star core [39].

With gravitational wave detection now on the horizon, much work has gone into detailed simula-
tions of the supernova process, to predict possible resulting waveforms. As one might imagine, this
violent process, in which strong magneto-hydrodynamics, nuclear physics and general relativity are all
important, is a formidable challenge to simulate. Indeed, it has proven challenging to reproduce in these
simulations the spectacular explosions that we associate with supernovae [15]. Nonetheless, this recent
work has given new insights into the strength and spectral content one might expect from supernovae.
Unfortunately, predictions of strength remain subject to large uncertainties.

For scale, consider a supernova a distance r away in our galaxy that emits energy E in gravitational
waves, with a characteristic duration T and characteristic frequency f . One expects [15] a detectable
strain amplitude at the Earth of about

h ∼ 6× 10−21

(
E

10−7M�c2

) 1
2
(

1 ms

T

)(
1 kHz

f

)(
10 kpc

r

)
. (40)

For the nominal (but not necessarily accurate) values of r, E, T and f in this expression, the initial
LIGO and Virgo interferometers should have been able to detect a galactic supernova in gravitational
waves. But no supernova was detected electromagnetically in our galaxy during initial LIGO and Virgo
data taking, which is unsurprising, giving their expected low occurrence rate. With the expected order
of magnitude improvement in sensitivity of the advanced detectors, a galactic supernova with 100 times
smaller energy or a supernova with the same energy ten times further away would be accessible. Note,
however, that until one reaches the Andromeda galaxy (∼780 kpc), there is relatively little additional
stellar mass beyond the edge of the Milky Way, with nearby dwarf galaxies contributing only a few
percent additional mass. (Nonetheless, the most recent known nearby supernova – SN1987A – was in
the Large Magellanic Cloud at ∼50 kpc.)

One intriguing scenario in which a core collapse supernova could be seen in gravitational waves to
much larger distances is via a bar mode instability [40], in which differential rotation in a collapsing star
leads to a large, rapidly spinning quadrupole moment, generating waves detectable from well outside
our own galaxy [1]. Another type of instability (r-mode) may develop in the birth of a neutron star, but
its lifetime is expected to be long enough, that it will be discussed below in the category of continuous
wave sources.
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Another potential transient source of poorly known gravitational waveform shape is the sudden
release of energy from a highly magnetized neutron star (magnetar). Although “ordinary” neutron
stars are characterized by extremely strong surface magnetic fields (∼1012 G), many magnetars appear
to have fields ∼100-1000 times still stronger, implying enormous pent-up magnetic energy. It is thought
that soft gamma ray repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are different observational
manifestations of the same underlying system - a highly magnetized star which sporadically converts
magnetic field energy into radiation [41]. Whether this process involves rupture of the neutron star crust,
vortex rearrangement in a core superconducting fluid, or some other process, is not yet well understood.
Especially dramatic instances are superflares, such as the December 2004 flare from SGR 1806-20, in
which ∼1039 J (1046 erg) of electromagnetic energy was released [42]. This radiation release from
∼10 kpc away disturbed the Earth’s ionosphere sufficiently to disrupt some radio communications [43].
How much gravitational wave energy might be released in such events is unclear, although it has been
proposed that the energy released into neutron star crustal vibrations could be comparable to that
released electromagnetically [44], in which case gravitational radiation due to those vibrations could be
substantial. For scale, the magnetic energy stored in a neutron star with surface field of 1015 G is O(1040

J = 1047 erg), assuming an internal field no larger than the surface field. If the star had still stronger
internal fields, the energy would be still larger. Given the uncertainties in the mechanism leading to
these enormous radiation releases, it is hard to be confident of predicted waveforms. Hence generic GW
transient algorithms are appropriate in searching for flares, as discussed below in section 4.3.

Another possible transient source is emission of bursts of gravitational radiation from “cosmic string
cusps” [45]. Cosmic strings might be defects remaining from the electroweak (or earlier) phase transition
or possibly primordial superstrings redshifted to enormous distances. In either model, kinks in these
strings would travel at the speed of light with an isotropic distribution of directions, generating a
model-dependent gravitational wave spectrum that is collimated along the direction of cusp travel.
According to this idea, one would expect a cosmological background of GW bursts, that might be
detected individually. As discussed below, this same model could lead to a steady-state, lower-level
stochastic background from cusp radiation from more distant reaches of the universe.

A general consideration in burst searches is the energy release implicit for a given source distance and
detectable strain amplitude. As the distance of the source increases, the energy required for its waves
to be detectable on Earth increases as the square of the distance. Specifically, rewriting equation (40),
one obtains the relation:

E ∼ (3× 10−3M�c
2)

(
h

10−21

)2(
T

1 ms

)(
f

1 kHz

)(
r

10 Mpc

)2

(41)

Hence for a source distance much beyond 10 Mpc and for initial LIGO/Virgo sensitivities to transients,
one needs sources emitting significant fractions of a solar mass in gravitational radiation in frequency
bands accessible to terrestrial detectors, such as is expected in the case of coalescing binary systems.

2.5 Continuous waves

Continuous gravitational waves refer to those that are long-lasting and nearly monochromatic. In the
frequency band of present and planned terrestrial detectors, the canonical sources are galactic, non-
axisymmetric neutron stars spinning fast enough that twice their rotation frequency is in the detectable
band. (For future space-based gravitational wave detectors, the early stages of coalescing binaries
provide another continuous-wave source, where the orbital decay leads to only a small secular departure
from monochromaticity.)

Several different mechanisms have been proposed by which spinning neutron stars could generate
detectable gravitational waves. Isolated neutron stars may have intrinsic non-axisymmetry from resid-
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ual crustal deformation (e.g., from cooling & cracking of the crust) [46], or from non-axisymmetric
distribution of magnetic field energy trapped beneath the crust [47].

An isolated star may also exhibit normal modes of oscillations, including r-modes in which quadrupole
mass currents emit gravitational waves [48]. These r-modes can be inherently unstable, arising from az-
imuthal interior currents that are retrograde in the star’s rotating frame, but are prograde in an external
reference frame. As a result, the quadrupolar gravitational wave emission due to these currents leads to
an increase in the strength of the current. This positive-feedback loop leads to an intrinsic instability.
The frequency of such emission is expected to be approximately 4/3 the rotation frequency [48]. Seri-
ous concerns have been raised [49], however, about the detection utility of this effect for young isolated
neutron stars (other than truly newborn stars in our galaxy), where mode saturation appears to occur
at low r-mode amplitudes because of various dissipative effects. This notion of a runaway rotational
instability was first appreciated for high-frequency f -modes [50], (Chandrasekhar-Friedman-Schutz in-
stability), but realistic viscosity effects seem likely to suppress the effect [51].

In addition, as discussed below, a binary neutron star may experience non-axisymmetry from non-
isotropic accretion (also possible for an isolated young neutron star that has experienced fallback ac-
cretion shortly after birth).

The detection of continuous gravitational waves from a spinning neutron star should yield precious
information on neutron star structure and the equation of state of nuclear matter at extreme pressures
when combined with electromagnetic measurements of the same star.

In principle, there should be O(108−9) neutron stars in our galaxy [52], out of which only about 2000
have been detected, primarily as radio pulsars. The small fraction of detections is understandable, given
several considerations. Radio pulsations appear empirically to require the combination of the magnetic
field and rotation frequency to satisfy the approximate relation B · f 2

rot > 1.7 × 1011 G·(Hz)2 [53]. As
a result, isolated pulsars seem to have lifetimes of ∼ 107 years [54], after which they are effectively
radio-invisible. On this timescale, they also cool to where X-ray emission is difficult to detect. There
remains the possibility of X-ray emission from steady accretion of interstellar medium (ISM), but it
appears that the kick velocities from birth highly suppress such accretion [55] which depends on the
inverse cube of the star’s velocity through the ISM.

A separate population of pulsars and non-pulsating neutron stars can be found in binary systems.
In these systems accretion from a non-compact companion star can lead to “recycling,” in which a
spun-down neutron star regains angular momentum from the infalling matter. The rotation frequencies
achievable through this spin-up are impressive – the fastest known rotator is J1748-2446ad at 716
Hz [56]. One class of such systems is the set of low mass X-ray binaries (LMXBs) in which the neutron
star (∼1.4 M�) has a much lighter companion (∼0.3 M�) [54] that overfills its Roche lobe, spilling
material onto an accretion disk surrounding the neutron star or possibly spilling material directly onto
the star, near its magnetic polar caps. When the donor companion star eventually shrinks and decouples
from the neutron star, the neutron star can retain a large fraction of its maximum angular momentum
and rotational energy. Because the neutron star’s magnetic field decreases during accretion (through
processes that are not well understood), the spin-down rate after decoupling can be very small.

Equating rotational energy loss rate to magnetic dipole radiation losses, leads to the relation [57]:
(
dE

dt

)

mag

=
µ0M

2
⊥ω

4

6πc3
, (42)

where M⊥ is the component of the star’s magnetic dipole moment perpendicular to the rotation axis:
M⊥ = M sin(α), with α the angle between the axis and north magnetic pole. In a pure dipole moment
model, the magnetic pole field strength at the surface is B0 = µ0M / 2πR3. Equating this energy loss
to that of the (Newtonian) rotational energy 1

2
Izzω

2 leads to the prediction:

dω

dt
=

µ0R
6

6πc3Izz

B2
⊥ω

3. (43)
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Note that the spindown rate is proportional to the square of B⊥ = B0 sin(α) and to the cube of the
rotation frequency. The cubic dependence of dω/dt on ω leads to a relation between the present day
rotational frequency f and the star’s spindown age τ :

τ = −
[
f

2 ḟ

] [
1−

(
f

f0

)2
]
, (44)

where f0 was the frequency a time τ in the past (assuming magnetic dipole radiation has dominated
rotational energy loss). In the limit f � f0, this reduces simply to

τ = −
[
f

2 ḟ

]
. (45)

More generally, for a star spinning down with dependence:
(
dω

dt

)
= Kωn, (46)

for some constant K, equation 44 becomes (assuming n 6= 1):

τ = −
[

f

(n− 1) ḟ

] [
1−

(
f

f0

)(n−1)
]
, (47)

and equation (45) becomes:

τ = −
[

f

(n− 1) ḟ

]
. (48)

Assuming n (often called the “braking index” and derived from the ratio ff̈/ḟ 2 when f̈ is measurable)
is three (as would be the case for a rotating magnetic dipole), leads to approximate inferred ages for
many binary radio pulsars in excess of 109 and even well over 1010 years [58]. A recent calculation
suggests that this surprising result can be explained by reverse-torque spindown during the Roche
lobe decoupling phase [59]. In fact, measured braking indices for even young pulsars tend to be less
than three, suggesting that the model of a neutron star spinning down with constant magnetic field is
inaccurate [54]. (See refs. [60] for discussions of spindown evolution in the presence of both gravitational
wave and electromagnetic torques.)

In summary, there are at least three distinct populations of neutron stars potentially detectable via
continuous gravitational waves: relatively young, isolated stars with spin frequencies below ∼50 Hz,
such as the Crab pulsar; actively accreting stars in binary systems; and recycled “millisecond” stars for
which accretion has ceased and which generally have rotation frequencies above 100 Hz. In some cases
the companion donor has disappeared, e.g., via ablation, leaving an isolated neutron star, but most
known millisecond pulsars remain in binary systems, as is clear from figure 3, based on data from the
Australia National Telescope Facility’s pulsar database [58]

Let’s now consider the gravitational radiation one might expect from these stars. If a star at a
distance r away has a quadrupole asymmetry, parametrized by its ellipticity:

ε ≡ Ixx − Iyy
Izz

, (49)

and if the star is spinning about the approximate symmetry axis of rotation (z), (assumed optimal –
pointing toward the Earth), then the expected intrinsic strain amplitude h0 is

h0 =
4 π2GIzzf

2
GW

c4r
ε = (1.1× 10−24)

(
Izz

I0

)(
fGW

1 kHz

)2(
1 kpc

r

)( ε

10−6

)
(50)
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Figure 3: Measured periods and period derivatives for known radio pulsars. Closed circles indicate
isolated stars. Open triangles indicate binary stars.

where I0 = 1038 kg·m2 (1045 g·cm2) is a nominal quadrupole moment of a neutron star, and the grav-
itational radiation is emitted at frequency fGW = 2 frot. (Reduction of detectable strain amplitude by
non-optimal star orientation will be discussed in section 4.4.1.) The total power emission in gravitational
waves from the star (integrated over all angles) is

dE

dt
= −32

5

G

C5
I2

zz ε
2 ω6 = −(1.7× 1033 J/s)

(
Izz

I0

)2 ( ε

10−6

)2
(
fGW

1 kHz

)6

. (51)

For an observed neutron star of measured f and ḟ , one can define the “spindown limit” on maximum
detectable strain by equating the power loss in equation (51) to the time derivative of the (Newtonian)
rotational kinetic energy: 1

2
Iω2, as above for magnetic dipole radiation. One finds:

hspindown =
1

r

√
−5

4

G

c3
Izz
ḟGW

fGW

= (2.5× 10−25)

(
1 kpc

r

)√√√√
(

1 kHz

fGW

)( −ḟGW

10−10 Hz/s

)(
Izz

I0

)
(52)

Hence for each observed pulsar with a measurable spindown and well determined distance r, one can
determine whether energy conservation even permits detection of gravitational waves in an optimistic
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scenario. Unfortunately, nearly all known pulsars have strain spindown limits below what could be
detected by the initial LIGO and Virgo detectors, as discussed below.

A similarly optimistic limit based only on the age of a known neutron star of unknown spin frequency
can also be derived. If one assumes a star is spinning down entirely due to gravitational radiation, then
the energy loss for this gravitar satisfies equation (46) with a braking index of five. Assuming a high
initial spin frequency, the star’s age then satisfies:

τgravitar = − f

4 ḟ
. (53)

If one knows the distance and the age of the star, e.g., from the expansion rate of its visible nebula,
then under the assumption that the star has been losing rotational energy since birth primarily due to
gravitational wave emission, then one can derive the following frequency-independent age-based limit
on strain [61]:

hage = (2.2× 10−24)

(
1 kpc

r

)√(
1000 yr

τ

)(
Izz

I0

)
(54)

A notable example is the Compact Central Object (CCO) in the Cassiopeia A supernova remnant. Its
birth aftermath may have been observed by Flamsteed [62] in 1680, and the expansion of the visible
shell is consistent with that date. Hence Cas A, which is visible in X-rays but shows no pulsations, is
almost certainly a very young neutron star at a distance of about 3.4 kpc. From the above equation,
one finds an age-based strain limit of 1.2×10−24, which is accessible to initial LIGO and Virgo detectors
in their most sensitive band.

A simple steady-state argument by Blandford [1] led to an early estimate of the maximum detectable
strain amplitude expected from a population of isolated gravitars of a few times 10−24, independent
of typical ellipticity values, in the optimistic scenario that most neutron stars become gravitars. A
later detailed numerical simulation [63] revealed, however, that the steady-state assumption does not
generally hold, leading to ellipticity-dependent expected maximum amplitudes that can be 2-3 orders
of magnitude lower in the LIGO band for ellipticities as low as 10−9 and a few times lower for ellipticity
of about 10−6.

Yet another approximate strain limit can be defined for accreting neutron stars in binary systems,
such as Scorpius X-1. The X-ray luminosity from the accretion is a measure of mass accumulation at
the surface. As the mass rains down on the surface it can add angular momentum to the star, which
in equilibrium may be radiated away in gravitational waves. Hence one can derive a torque-balance
limit [64, 65, 66]:

htorque = (5× 10−27)

√(
600 Hz

fGW

)( Fx

10−8 erg/cm2/s

)
(55)

where Fx is the observed energy flux at the Earth of X-rays from accretion. Note that this limit is
independent of the distance to the star.

The notion of gravitational wave torque equilibrium is potentially important, given that the max-
imum observed rotation frequency of neutron stars in LMXBs is substantially lower than one might
expect from calculations of neutron star breakup rotation speeds (∼1400 Hz) [67]. It has been sug-
gested [68] that there is a “speed limit” governed by gravitational wave emission that governs the
maximum rotation rate of an accreting star. In principle, the distribution of frequencies could have
a quite sharp upper frequency cutoff, since the angular momentum emission is proportional to the
5th power of the frequency. For example, for an equilibrium frequency corresponding to a particular
accretion rate, doubling the accretion rate would increase the equilibrium frequency by only about 15%.

A number of mechanisms have been proposed by which the accretion leads to gravitational wave
emission. The simplest is localized accumulation of matter, e.g., at the magnetic poles (assumed offset
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from the rotation axis), leading to a non-axisymmetry. One must remember, however, that matter can
and will diffuse into the crust under the star’s enormous gravitational field. This diffusion of charged
matter can be slowed by the also-enormous magnetic fields in the crust, but detailed calculations [69]
indicate the slowing is not dramatic. Another proposed mechanism is excitation of r-modes in the fluid
interior of the star [48], with both steady-state emission and cyclic spinup-spindown possible [70, 49].

2.6 Stochastic waves

Stochastic gravitational waves arise from a superposition of incoherent sources. While a cosmologi-
cal background from primordial gravitational waves created in the Big Bang are a natural possible
source [71], other isotropic possibilities are from cosmic strings and from very distant mergers of neu-
tron stars or of supermassive black holes (accessible to space-based detectors). Non-isotropic sources in
the band of terrestrial detectors could include the superposition of pulsar radiation from, say, the Virgo
Cluster. Over very long time scales, gravitational radiation from an accreting neutron star could also
appear stochastic, as the phase of the narrowband signal wanders.

A primordial isotropic gravitational wave background is predicted by most cosmological theories, al-
though the predicted strengths of the background vary enormously. It is customary [1, 72] to parametrize
the background strength vs. frequency f by its energy density per unit logarithm normalized to the
present-day critical energy density ρcrit = 3H2

0c
2 / 8πG of the universe, where H0 is Hubble’s constant,

taken here to be 70.5 km/s/Mpc [73]:

Ωgw(f) =
1

ρcrit

dρgw(f)

d ln(f)
(56)

The associated power spectral density can be written [74]:

SGW =
3H2

0

10π2
f−3 Ω(f). (57)

Note that, as for the Cosmic Microwave Background Radiation (CMBR), the primordial gravitational
waves would be highly redshifted from the expansion of the universe, but likely to a much greater
degree, since they would have decoupled from matter at vastly earlier times.

A more convenient reformulation in amplitude spectral density can be written as [75]

h(f) ≡ [SGW(f)]
1
2 = (5.6× 10−22)h100 (Ω(f))

1
2

(
100 Hz

f

) 3
2

Hz−
1
2 , (58)

where h100 ≡ H0/(100km/s/Mpc).
A key question is what range of values are expected for Ω(f)? Figure 4 shows a range of expectations

vs. frequency (28 orders of magnitude in frequency and 12 in Ω). The bottom curve is a rough estimate
expected from standard inflationary scenarios [76, 77]. This graph also shows direct limits on gravita-
tional wave energy density from comparison of observed abundances of elements with predictions from
Big Bang nucleosynthesis (BBN) [78], in addition to limits derived from measurements of anisotropies
in the CMBR [79]. For reference, the normalized total energy density of the CMBR itself is about
ΩCMBR = 5 × 10−5, and the energy density from primordial neutrinos is estimated to be bounded by
Ωνν̄ < 0.014 [73].

As discussed below, the Ω(f) sensitivity of the initial LIGO and Virgo detectors to this isotropic
background is O(several × 10−6), with an expected improvement of more than three orders of magnitude
for advanced detectors. From figure 4, it is clear, though, that even advanced detectors fall far short of
the sensitivity needed to probe standard inflation.
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Figure 4: Comparison of different stochastic gravitational wave background measurements and mod-
els [80]. Results for LIGO S4 and S5 searches are shown in the frequency band around 100 Hz, along
with projected Advanced LIGO sensitivity. The indirect bounds due to BBN and CMBR / matter power
spectra apply to the integral of ΩGW(f) over the frequency bands denoted by the corresponding dashed
curves. Projected sensitivities of the satellite-based Planck CMBR experiment and LISA GW detector
are also shown. The pulsar bound is based on the fluctuations in the pulse arrival times of millisecond
pulsars and applies at frequencies around 10−8 Hz. Measurements of the CMBR at large angular scales
constrain the possible redshift of CMBR photons due to a stochastic gravitational wave background,
and therefore limit the amplitude of that background at largest wavelengths (smallest frequencies).
Examples of inflationary, cosmic strings, and pre-big-bang models are also shown (the amplitude and
the spectral shape in these models can vary significantly as a function of model parameters).

There are other Big Bang scenarios, however, that permit much higher primordial gravitational
wave energy densities, In particular, the curve labeled “Pre-BigBang” in figure 4 shows an upper range
expected in certain pre-Big Bang models [80]. The advanced detectors can address the upper range of
this region.

A completely different source of cosmological, isotropic stochastic waves could come from the cosmic
strings discussed above in section 2.4 as a potential source of gravitational wave burst radiation. Figure 4
shows a range of predictions of stochastic radiation energy density in this model for a range in assumed
string tension µ and string reconnection probability p [80]. Part of this region can be addressed by the
initial LIGO and Virgo detectors, with more parameter space accessible to advanced detectors.

A more conventional source of isotropic, stochastic gravitational waves is the superposition of radia-
tion from many distant events, such as binary coalescences from compact stars too far away to be seen
individually [81]. In the terrestrial band these coalescences could be from stellar NS-NS, NS-BH and
BH-BH systems. A recent detailed analysis [82] suggests that this background could well be detectable
by 2nd-generation detectors and could present a significant background for 3rd-generation searches.
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Figure 5: Joe Weber working on an early gravitational wave bar with piezo-electric transducers as strain
sensors (circa 1965). Credit: University of Maryland.

In the space-based detector band (∼ 10−4–1 Hz for the original LISA design [83]), the coalescences
could be from supermassive black hole mergers, e.g., from galaxy collisions. As discussed in section 3.7,
binary super-massive black hole (SMBH) systems are a serious prospect for pulsar timing arrays in the
several-nHz band.

3 Gravitational Wave Detectors

3.1 Overview of gravitational wave detection

Until the mid 20th century there remained some question as to whether or not gravitational waves
were truly predicted by general relativity [84]. It was not obvious that what appeared to be a wave
phenomenon could not be explained away as an artifact of coordinate/gauge transformations (recall
discussion in section 2.1). The reality of gravitational wave prediction was confirmed, however, by the
realization that energy could be extracted from the waves, i.e., it was possible, in principle, to build a
detector that could register their passage [84].

The earliest manmade gravitational wave detectors were based on a simple gedanken experiment: if
two masses on a spring are momentarily stretched apart and then compressed by a gravitational wave,
potential energy is imparted to the spring, independent of how coordinates are defined. If the character-
istic frequency of the wave is near the resonance frequency of the mechanical system, the response to the
wave is magnified, not unlike an LRC antenna circuit’s response to a passing electromagnetic wave. One
early approach was to search for excitations of the Earth’s crustal vibrational normal modes (∼sub-mHz
and higher harmonics) [85], a technique useful for setting upper limits, but large earthquakes made it
unattractive for detection.

In practice, since it is the elastic energy that matters, the first gravitational wave detectors were
simple metal cylinders, where the energy converted to longitudinal oscillations of the bar was measured
via piezoelectric transducers near the “waist” of the bar, as shown in figure 5. One looked for a sudden
change in the amplitude of nominally thermal motion of the bar [86]. Joe Weber of the University of
Maryland pioneered this detector design and implementation; he also reported anomalies attributed
to gravitational waves, such as coincident transients in geographically separated pairs of bars [87], but
subsequent experiments with comparable or more sensitive instruments failed to confirm the reported
detections [13].

In the following years the technology of bar detectors improved steadily, with the introduction of
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h

Figure 6: Cartoon illustration of the effect of a gravitational wave on the arms of a Michelson interfer-
ometer, where the readout photodiode is denoted by the green semi-circle [94].

cryogenic detectors to reduce thermal noise, cryogenic squid transducers for more efficient detection of
bar excitations, and increasingly sophisticated analysis techniques [13, 88]. In the late 1990s, before
1st-generation gravitational wave interferometers came online, there were five major bar detectors op-
erating cooperatively in the International Gravitational Event Collaboration (IGEC) [88]: Allegro [89]
at Louisiana State University; Auriga[90] at Padua University, Explorer[91] at CERN, Nautilus [91] at
Frascati Laboratory, and Niobe [92] at the University of Western Australia. These bars achieved impres-
sive strain amplitude spectral noise densities near 10−21/

√
Hz, but only in narrow bands of ∼1-30 Hz [93]

near their resonant frequencies (ranging from ∼700 Hz to ∼900 Hz). Hence waveform reconstruction
for all but very narrowband gravitational wave sources was not feasible with these detectors. As of
2012, only the Auriga and Nautilus detectors are still collecting data, since the major interferometer
detectors LIGO and Virgo have achieved broadband sensitivities better than the narrowband sensi-
tivities of the bars. It should be noted, however, that as of 2012, the LIGO and Virgo detectors are
undergoing major upgrades (discussed in section 3.4), leaving GEO 600 as the only major gravitational
wave interferometer collecting data routinely for the next several years. Should a supernova occur in
our galaxy during that time, only GEO 600 and the remaining bar detectors would have a chance of
detecting it in gravitational waves.

Gravitational-wave interferometers take a different approach to detection from that of resonant bars.
Setting aside enhancements to be discussed below, a simple right-angle Michelson laser interferometer,
as shown in the cartoon in figure 6 [94] is a natural gravitational-wave detector. For example, a linearly
polarized wave impinging normally on the interferometer with its polarization axis aligned with the
arms will alternately stretch one arm while contracting the other. One common question is how this
alternation is detected, given that the laser light is stretched and compressed too. The answer is that
the detection is based on the phase difference between the light returning from each arm, and that phase
difference increases with time, following the passage of the gravitational wave. The red-shifted light
simply takes longer to complete its round-trip in the arm than the blue-shifted light. Hence even an
idealized, simple gravitational-wave interferometer has a finite and frequency-dependent response time.
An intuitive elaboration on this concept and a related gedanken experiment can be found in ref. [95].

The basic idea for a gravitational wave interferometer was first written down by Gertsenshtein and
Pustovoit in 1962 [96]. Weber’s group developed this idea further into the first gravitational wave
interferometer prototype [97] built by Weber graduate Robert Forward at Hughes Aircraft Research
Lab [98]. It was early work carried out in parallel by Rai Weiss [99], however, that laid the groundwork
for present-day gravitational wave interferometers. As discussed further below, it became appreciated
quickly that laser interferometers had the potential to surpass bar detectors in sensitivity, and there was
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rapid development of ideas and technology. Subsequent improvements included (among many others)
using Fabry-Perot cavities for the interferometer arms to increase the time of exposure of the laser light
to the gravitational wave [100], introduction of a “recycling” mirror between the laser and beam-splitter,
to increase effective laser power [101], and introduction of another mirror between the beam splitter
and photodetector to allow tuning of the interferometer’s frequency response [102].

3.2 Detector sensitivity and resolution considerations

In keeping with the concepts that led to their invention, it is most natural to think of a bar detector
as an energy detection device, while an interferometer is more naturally regarded as a strain amplitude
detector. (An interesting, alternative perspective from which an interferometer can be regarded as a
non-linear parametric energy transducer can be found in ref. [103].)

Let’s consider what sensitivity one might expect from an ideal bar detector of length L, mass M ,
operating at temperature T , and having a resonant frequency (fundamental longitudinal harmonic)
f of mechanical quality factor Q. From the equipartition theorem, the average energy of vibration
of the mode is kBT , where kB is Boltzmann’s constant. For simplicity, treat the bar’s fundamental
longitudinal mode of vibration as a simple harmonic oscillator of spring constant k with displacement
of one end of the bar from its nominal distance of L/2 from the center as the spring’s displacement
from equilibrium with the half of the bar providing mass M/2. Then we expect an RMS strain motion
of (from 1

2
kx2

RMS ≡ 1
2
(M/2)(2πf0)2 = 1

2
kBT ):

hRMS ∼ xrms

L/2
∼ 2

L

√
krmBT

2π2f 2
0M

. (59)

Taking the LSU Allegro bar [89] as an example, for which L = 3.0 m, f0 = 907 Hz, M = 2296 kg, and
T = 4.2 K, one obtains hRMS ∼ 3× ∼ 10−17. Naively then, one might think that only gravitational
waves with characteristic amplitude much greater than 10−17 would be detectable with such a bar.
Fortunately, the fact that resonant bars are deliberately designed with high mechanical quality factors
Q allows much better sensitivity than this naive calculation suggests. The impulse imparted by a
passing wave is dissipated over a time scale of ∼ Q/f0. Hence by measuring over many cycles (but less
than Q) of the resonance, one can reduce the effective noise by a factor comparable to

√
Q.

It is interesting to examine relations involving the energy Edep deposited in the bar by the passing
gravitational wave. From refs. [6] and [104], one has for the characteristic strain amplitude hc of a burst
wave of duration of characteristic time τburst:

hc ≈
√

15

2

L

τburstv2
s

√
Edep

M
, (60)

where vs is the speed of sound in the bar. For a characteristic amplitude of 10−19, one obtains for
the Allegro bar Edep ∼ 4 × 10−28 J. For reference, for a gravitational wave of frequency 900 Hz, this
corresponds to a loss of about 700 gravitons, each of energy 3.7× 10−12 eV.

The above calculations ignore non-fundamental but important additional sources of noise, such as
in the readout electronics or from the terrestrial environment, including magnetic fields. Measuring the
deposited gravitational wave energy is non-trivial. The original piezo-electric transducers at the waists
of the original bar detectors evolved into transducers at the ends of the detectors, where vibration
amplitude is maximum. Using a transducer with an intrinsic resonant frequency very near that of the
bar leads to a coupled oscillator with two normal modes and a beat frequency that defines the time scale
for the energy of the resonant bar to leak into the transducer. This amplification trick [105] permits
more efficient detection readout.
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There is a nominal quantum limit, however, to the performance of a bar detector (as there is for an
interferometer, as discussed below). The readout of the energy in the fundamental harmonic is limited
by the quantum noise of the system at that frequency. In summary [6], the nominal quantum limit on
strain sensitivity on an ideal bar is

hRMS ≈ 1

L

√
h̄

2πf0M
≈ few × 10−21, (61)

where the numerical value is for a bar of Allegro’s dimensions and mass.
This nominal quantum limit need not be truly fundamental. By exploiting quantum “squeezing”

(sacrificing phase information for amplitude information), one can, in principle, do somewhat bet-
ter [106, 107]. But squeezing is notoriously delicate, in practice, offering little hope of improvement by
orders of magnitude.

It is amusing to compare the energy loss of a gravitational wave impinging on a bar detector with
that of high-energy neutrinos, which are famous for their penetration. For example, 1-GeV muon
neutrinos traveling along the axis of a 3-meter long aluminum bar have a probability of interacting of
about 3× 10−12. In comparison, a monochromatic (1 kHz), planar linearly polarized gravitational wave
of amplitude h+ = 10−19 has an energy flux F through the bar of [see equation (25)] of 1.6 × 10−1

W/m2, while the energy deposition rate for a resonant bar with quality factor Q = 106 is approximately
1.2 × 10−22 W on resonance [103], giving a fractional energy loss of O(10−21), making the “elusive
neutrino” seem relatively easy to stop. Saulson [103] computes effective “cross sections” of resonant
bars and finds, for example, σbar/L

2
bar ∼ 10−22. Such a tiny value can be thought of as a measure of

the weakness of the gravitational interaction, or alternatively, as a measure of the impedance mismatch
between matter and extremely stiff space-time [108].

Let’s turn now to the expected sensitivity of interferometers. For concreteness, consider a grav-
itational wave burst with a duration of 1 ms and characteristic frequency in the detector’s sensitive
band. In order to obtain a “5-σ detection,” the intensity of the light at the photodetector must change
by at least what is required to be seen over shot noise (photon count statistical fluctuations). For a
10-W (λ = 1064 nm) laser impinging on the photodetector (after recombination at the beam splitter),
one has a relative statistical fluctuation of 1/

√
(5.3× 1019 s−1)(10−3 s) ∼ 4× 10−9. Assuming a simple

Michelson interferometer of the same size as LIGO (4-km arms) with the beam splitter positioned to
give a nominal light intensity at half its maximum (constructive interference of the returning beams),
one has a gain factor of

1

I

dI

dh
= 8π

L

λ
≈ 1011. (62)

Hence to obtain 5-σ detection, one needs a strain amplitude of O(2×10−19), which even in this relatively
simple configuration, already gives impressive broadband sensitivity. As discussed in more detail below,
the LIGO and Virgo interferometers have achieved significant improvement over this sensitivity by
using Fabry-Perot cavities in the arms and a recycling mirror to increase effective light power. Other
improvements, such as elaborate laser intensity and frequency stabilization, along with a heterodyne
RF readout scheme that allows the interferometer to operate with near-destructive interference at the
photodiode, mitigate non-fundamental noise sources that would otherwise invalidate the above simple
model.

As with bars, there is a nominal quantum limit. Naively, one could improve sensitivity arbitrarily
by increasing laser power, to reduce shot noise (∝ 1/

√
Nphot), but at some intensity, radiation pressure

fluctuations (∝
√
Nphot) become limiting. Note that the effects of radiation pressure are reduced by

increasing the masses of the mirrors. For example, Advanced LIGO mirrors will be 40 kg, much heavier
than the 11-kg mirrors used for Initial LIGO, in order to cope with the increased laser power (∼180
W vs ∼10 W). One could imagine increasing mirror mass with laser power indefinitely, but sustaining
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Figure 7: Antenna response pattern for a Michelson interferometer in the long-wavelength approxima-
tion. The interferometer beamsplitter is located at the center of each pattern, and the thick black lines
indicate the orientation of the interferometer arms. The distance from a point of the plot surface to the
center of the pattern is a measure of the gravitational wave sensitivity in this direction. The pattern
on the left is for + polarization, the middle pattern is for × polarization, and the right-most one is for
unpolarized waves [94].

the high optical quality and high mechanical quality factor becomes more challenging. In addition, it
becomes more difficult to prevent internal vibrational modes from contaminating the detection band.

Once again, as with bars, the standard quantum limit can be evaded via squeezing [109], but
with the opposite intent. In interferometer squeezing, one sacrifices intensity sensitivity to achieve
lower phase noise, using an optical parametric amplifier at the output beam of the interferometer.
A useful way to think about the quantum fluctuations is that when the interferometer is operated
near a point of destructive interference, vacuum fluctuations in the quantum field “leak” back into the
interferometer. In some sense, squeezing the interferometer is actually squeezing the vacuum state with
which it interacts. Squeezing has been demonstrated not only in tabletop experiments [110], but also
on two large-scale gravitational wave interferometers (GEO 600 [111] and LIGO [112]). In the future
squeezing may be used to go beyond design sensitivities for Advanced LIGO and Virgo, or in the event
that technical obstacles arise at full laser power for those interferometers, squeezing offers an alternative
to reach design sensitivity at lower laser powers.

Both bars and interferometers are better thought of as antennae than as telescopes, because their
sizes are small compared to the wavelengths they are meant to detect. For example, a bar detector
of length 3 m with a resonant frequency of 900 Hz has L/λ ∼ 10−5, while even the LIGO detectors
when searching at 4 kHz have L/λ of only about 0.05. These small ratios imply broad antenna lobes.
Figure 7 [94] shows the antenna lobes for +, × linear polarizations and circular polarizations vs. incident
direction for a Michelson interferometer in the long-wavelength limit. As a result, a single interferometer
observing a transient event has very poor directionality.

One can do substantially better by triangulating detections via multiple detectors. For a given
SNR, consistency of timing between each detector in a pair leads to an allowed annulus on the sky
with angular thickness ∝ 1/SNR. Combining each allowed pair in a network of three or more detectors
favors intersections of these annular rings. In principle, requiring amplitude consistency of a putative
sky location and the known relative orientations of the detectors resolves resulting ambiguities from
multiple intersections, but polarization effects complicate that resolution, since detected amplitudes
depend on the typically unknown orientation of the gravitational wave source.

A notable exception to the L/λ � 1 rule of thumb is detection of a long-lived continuous-wave
source, where the Earth’s orbit around the solar system barycenter, gives a single detector over the
course of a year an effective aperture radius comparable to the distance from the Earth to the Sun. For
a nearly monochromatic, continuous-wave source at 1 kHz, e.g., from a millisecond pulsar, Rayleigh’s
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Figure 8: Aerial photographs of the LIGO observatories at Hanford, Washington (left) and Livingston,
Louisiana (right) [94]. The lasers and optics are contained in the white and blue buildings. From the
large corner building, evacuated beam tubes extend at right angles for 4 km in each direction (the full
length of only one of the arms is seen in each photo); the tubes are covered by the arched, concrete
enclosures seen here. Credit: LIGO Laboratory.

criterion gives an angular resolution of approximately:

Θ ≈ 3× 105 m

3× 1011 m
= 10−6 radians (0.2 arcsec) (63)

3.3 First-generation interferometers

The “first generation” of ground-based gravitational wave interferometers is not well defined, since many
of the prototype interferometers used to demonstrate new technology developments were also used in
prototype gravitational wave searches, some of which led to journal publications. Saulson [6] provides
a nice summary of these experiments and searches. Prototype interferometers were built and operated
around the world in Australia, Europe, Japan and the United States. These prototypes led eventually
to the building of six major interferometers: TAMA (300-m arms) near Tokyo [113], GEO 600 (600-m
arms) near Hannover [114], Virgo (3000-m arms) near Pisa [115], and LIGO (two with 4000-m arms and
one with 2000-m arms ) in the states of Washington and Louisiana [116, 117, 118, 94, 139]. Figure 8
shows aerial views of the two LIGO sites in Hanford, Washington and Livingston, Louisiana. The major
interferometers share many design characteristics, but also display significant differences.

In the following, the design of the 4-km LIGO interferometers will be described in some detail,
followed by only a brief summary of differences between LIGO and the other major detectors. As a
result, the bibliography is LIGO-centric and makes no attempt to document all of the critical technical
developments leading to the other major interferometers. A thorough documentation of all important
developments leading to LIGO, however, is also beyond the scope of this review.

We begin with a more detailed description than given above of how a power-recycled Fabry-Perot
Michelson interferometer works.

3.3.1 Fabry-Perot cavities

It is helpful to start by reviewing the essential principles of a Fabry-Perot cavity. First, consider a
cavity formed by two flat, parallel mirrors, as shown in figure 9 with a polarized plane electromagnetic
wave of wavelength λ incident from the left, where the intra-cavity surfaces have amplitude reflectivity
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Figure 9: Schematic diagram of a flat-flat Fabry-Perot cavity with reflective coatings on the intra-cavity
mirror surfaces. The Ei labels and arrows refer to (signed) electric field amplitudes of waves traveling
in the directions of the arrow. E0 denotes the incident field on the cavity, and ERef denotes the net
reflected field. ri and ti denote the amplitude reflection and transmission coefficients of the coated
surfaces.

coefficients r1 and r2 and where the extra-cavity surfaces are taken, for simplicity, to have perfect anti-
reflective coatings. For input laser power of electric field amplitude E0 and in the steady state, after
start-up transients have settled down, one has the following relations among the electric field amplitudes
of the light entering, leaving and residing in the cavity at the two mirror surfaces:

Ea = t1E0 − r1Eb

Eb = −r2 e
iφEa

ERef = r1E0 + t1Eb (64)

where Ea refers to the rightward-moving wave at the 1st mirror, Eb refers to the leftward moving wave
at the 1st mirror, ERef refers to the wave reflected from the 1st mirror, and φ = 4 πL/λ is the length-
dependent phase shift due to propagation from the 1st mirror to the 2nd mirror and back. The sign
convention chosen here is to take r1 and r2 both positive. Solving these steady-state relations leads to

Ea =
t1

1− r1r2eiφ
E0,

Eb = − t1r2e
iφ

1− r1r2eiφ
E0,

ERef =
r1 − r2e

iφ

1− r1r2eiφ
E0. (65)

The cavity resonates when φ = 2πN for an integer N . If, as is typically the case for Fabry-Perot arm
cavities used in gravitational wave interferometers, the reflectivity of mirror 2 is much closer to unity
than that of mirror 1, then on resonance:

Ea ≈
t1

1− r1

E0,

Eb ≈ − t1
1− r1

E0,

ERef ≈ −E0. (66)

In practice, there are small losses in the cavity, in the coatings and transmission through mirror 2
that lead to small corrections to these relations. Note that in the above lossless approximation, energy
conservation requires |ERef | = |E0|.
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Imagine that a single Fabry-Perot is on resonance, but that a gravitational wave passes, leading to
a momentary increase of the cavity’s length by an amount ∆L. Then the change in ERef is governed
by the derivative: [

dERef

dL

]

φ=2πN

= −i (1− r2
1) r2

(1− r1r2)2

2π

λ
E0 (67)

Again, taking the case r2 → 1 and δr1 ≡ 1− r1 � 1,

[
dERef

dL

]

φ=2πN

≈ −i 2

δr1

2π

λ
E0, (68)

which implies a large amplification in phase sensitivity for small δr1. One figure of merit is the cavity
finesse F ≈ π

√
r1/(1− r1). In principle, a single cavity can therefore act as a gravitational wave

detector, but one gains in sensitivity by simultaneously monitoring another, identical arm oriented at a
right angle, not merely because of the potential to double the signal strength from optimum quadrupole
orientation, but much more important, mundane noise sources that affect the input field amplitude E0

and phase cancel in the difference-signal.
The above analysis idealized the laser light as a plane wave and used planar mirrors. But high-quality

lasers produce Gaussian beams with curved wavefronts. Fabry-Perot cavities are normally designed
with at least one curved mirror (usually concave as seen from the cavity), such that a Gaussian beam
resonates with a spherical wavefront at the mirror(s) with radii of wavefront curvature at those locations
to match those of the mirror(s). For a cavity of length L with two concave mirrors of radii R1 and
R2, it is useful [119] to define mirror g factors gi ≡ 1 − L/Ri, from which one can derive the beam’s
characteristic intensity radii at the mirrors (w1 and w2) and the beam’s “waist” (minimum radius):

w2
1 =

Lλ

π

√
g2

g1(1− g1g2)
, w2

2 =
Lλ

π

√
g1

g2(1− g1g2)
(69)

and

w2
0 =

Lλ

π

√
g1g2(1− g1g2)

(g1 + g2 − 2 g1g2)2
, (70)

Although the radii of curvature of the initial LIGO mirrors vary slightly, round numbers for the four
different 4-km arm cavities are R1 ≈ 14, 000 m (input mirror near the beam splitter) and R2 ≈ 7, 300 m
(end mirror), leading to beam radii at the input mirrors or about 3.6 cm and 4.5 cm, respectively [94],
with an inferred beam waist of 1.2 mm about 1 km from the input mirror. Ensuring that the mirror
aperture is much larger than the maximum beam radius is an important design constraint.

It should be noted that an infinite number of Gaussian-modulated waveforms can resonate in a
cavity (e.g., with Hermite-Gaussian or Laguerre-Gaussian envelopes), but their resonant lengths differ
slightly because of differing Gouy phases [119]. As a result, a servo-locked cavity resonating in the
fundamental mode (normally desired) will not generally simultaneously resonate in higher order modes
that could introduce confusion into the servo error signal. Matching the waist size and location of the
input laser beam to the cavity is delicate, with mismatches leading to degraded resonant power and
reduced phase sensitivity in ERef .

Another important consideration is the finite time response of a Fabry-Perot cavity to length changes,
ignored in the above steady-state analysis. There is a characteristic time scale τ ≈ L/πc for the infor-
mation of a disturbance to “leak” into the reflected light EREF (∼1 ms for LIGO 4-km interferometers).
For a fixed arm length L, the time constant τ increases with the cavity finesse. Hence, while increasing
finesse increases phase sensitivity at DC, it leads to more rapid onset of amplitude loss with higher
frequencies, as measured by the cavity pole fPole = 1/(4πτ) (∼85 Hz for LIGO 4-km interferometers).
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How does one maintain a Fabry-Perot cavity on resonance, especially when the mirrors are suspended
as free pendula, as discussed below? One needs a negative-feedback servo control system with an error
signal proportional to the deviation of the cavity from resonance and with an actuation mechanism
to bring the cavity back to resonance by forcing the error signal to zero (to a level consistent with a
necessarily finite gain). For gravitational-wave interferometers, the servo control system is based on
Pound-Drever-Hall (PDH) locking [120]. In this scheme, the laser light is phase-modulated at a radio
frequency fmod and a photodetector viewing the reflected light is demodulated at that frequency. To
see why this method is effective, consider the Bessel function expansion of a phase-modulated field:

E0 e
i[ωt+Γ cos(Ωmodt)] = E0

[
J0(Γ)eiωt + iJ1(Γ)ei(ω+Ωmod)t + iJ1(Γ)ei(ω−Ωmod)t

− J2(Γ)ei(ω+2Ωmod)t − J2(Γ)ei(ω−2Ωmod)t + ....
]

(71)

The field can be treated as a carrier with sidebands at integer harmonics of the modulation frequency,
where for a moderate modulation depth (< 1 radian), the strengths of the higher-order harmonics
fall off rapidly. Note, however, that the time-averaged intensity of a purely phase modulated beam is
monochromatic:

|E0e
iω+Γ cos(Ωmodt))t|2 = E2

0 , (72)

that is, no sidebands are apparent (imagine measuring power over many cycles of ω, but over only a
fraction of a cycle of Ωmod, where typically Ωmod/ω < 10−6). An exercise for the reader is verification
that explicit summation of the intensity contributions from equation (71) at Ωmodt and 2 Ωmodt cancel
to zero. The key to the PDH scheme [121] is that the carrier and sidebands have different resonant
characteristics in a Fabry-Perot cavity. For example, the carrier might resonate, while the fundamental
sidebands reflect promptly with negligible leakage into the cavity. In that case (for Ωmod � 2πfFSR,
where fFSR = c / 2L is the free spectral range of the cavity) the beat between the reflected carrier and
sideband will cancel for carrier resonance, but will have a non-zero residual beat when the carrier is
off resonance. For small deviations from resonance, the strength at the beat frequency is proportional
to the deviation in cavity length from its resonance value. Hence an error signal for locking the cavity
frequency to the laser frequency can be derived. One can just as well, treat the error signal as a measure
of the laser frequency’s deviation from what resonates in the cavity, and feed back to the laser frequency
to lock the servo, e.g., by actuating on a piezoelectric controller on one mirror of the Fabry-Perot lasing
cavity.

3.3.2 Power-recycled Michelson interferometry and Initial LIGO

The initial LIGO detector was a set of three power-recycled Michelson interferometers with the pa-
rameters given in table 2 [94]. Power recycled interferometry is explained in this section, along with
noise considerations. The LIGO laser source was a diode-pumped, Nd:YAG master oscillator and power
amplifier system, and emitted 10 W in a single mode at 1064 nm [122] The beam passed through an
ultra-high vacuum system (10−8-10−9 Torr) to reduce phase fluctuations from light scattering off resid-
ual gas [123] and to ensure acoustical isolation. The 4-km stainless steel tubes of 1.2-m diameter were
baked at 160◦ for 20 days to remove hydrogen.

The mirrors defining the interferometer were fused-silica substrates with multilayer dielectric coat-
ings having extremely low scatter, low absorption and high optical quality These mirrors were suspended
as pendula with a natural oscillation frequency of ∼0.76 Hz, designed to respond as essentially free “test
masses” to gravitational waves while being isolated from ground motion by the ∼ 1/ω2 filtering of the
pendulum. The suspension came from a single loop of steel wire around each mirror’s waist. Mirrors
were controlled by electromagnetic actuators – magnets bonded to the optics and influenced by cur-
rents in nearby coils mounted on the support structure. For further isolation from ground motion, the
pendulum support structures were mounted on four stages of mass-spring isolation stacks [124].
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H1 L1 H2

Laser type and wavelength Nd:YAG, λ = 1064 nm
Arm cavity finesse 220
Arm length 3995 m 3995 m 2009 m
Arm cavity storage time, τs 0.95 ms 0.95 ms 0.475 ms
Input power at recycling mirror 4.5 W 4.5 W 2.0 W
Power Recycling gain 60 45 70
Arm cavity stored power 20 kW 15 kW 10 kW
Test mass size & mass φ 25 cm× 10 cm, 10.7 kg
Beam radius (1/e2 power) ITM/ETM 3.6 cm / 4.5 cm 3.9 cm / 4.5 cm 3.3 cm / 3.5 cm
Test mass pendulum frequency 0.76 Hz

Table 2: Parameters of the LIGO interferometers. H1 and H2 refer to the interferometers at Hanford,
Washington, and L1 is the interferometer at Livingston Parish, Louisiana [94].

In addition to locking the arms on resonance, in order to obtain exquisite sensitivity to distance
changes between the arm mirrors, one must also “lock” the relative position of the beam splitter
with respect to the arm input mirrors so as to establish a well defined interference condition at the
output photodetector. Although one might naively choose the interference to be halfway between fully
destructive and fully constructive, in order to maximize the derivative of intensity with respect to
relative phase of the light returning from the arms, it pays instead to choose an interference operating
point that is at or near fully destructive (a null condition) [6].

The initial LIGO interferometers chose a null operating point for all but the final science data
runs, where a small offset was introduced, as discussed below. The primary advantage of destructive
interference is reduction of effective noise. In principle, the disturbance from a gravitational wave
produces a non-zero light intensity where there was previously only dark current. One might worry
that the increase in intensity would lead to a phase ambiguity, but the PDH signals used to control the
interferometer arms provided a neat solution. By introducing a deliberate (Schnupp) asymmetry [125]
(355 mm for LIGO) in the distance between the beam splitter and the arm input mirrors, one obtains
non-cancelling PDH sidebands at the photodetector that stand ready to beat with any non-cancelling
carrier light induced by a passing gravitational wave, where the phase of the beat signal reveals the
phase of the gravitational wave.

In the optical configuration described so far there are three longitudinal degrees of freedom that
must be controlled: the distances between the pairs of mirrors forming the Fabry-Perot arms and the
difference in distance between the beam splitter and the two input mirrors. Now we add one more
primary mirror to control, namely the recycling mirror located between the laser and the beam splitter.
By ensuring that the average optical path length between the recycling mirror and the arm input mirrors
is a half integer of laser wavelengths, one achieves resonance of the light in what is called the recycling
cavity[101, 126]. Hence the light returning toward the laser that would have otherwise been discarded
by the Faraday isolation optics (to prevent interference with the laser itself), is recycled back into the
main interferometer. This recycling effectively increases the laser power in the entire interferometer and
thereby decreases shot noise due to limited photon statistics. The addition of this mirror increases the
number of primary longitudinal servo-controlled degrees of freedom to four.

As one might expect, simultaneously controlling these four degrees of freedom is a technical challenge
for free-swinging pendulum mirrors subject to environmental disturbances. The challenge is increased
by several factors: the small time window in each swing during which the PDH error signal is effective
(having high gain), the power transients associated with individual arm locks, and the overall change
in sign of the differential arm signal as both arms resonate, requiring the servo feedback to reverse
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sign in tens of milliseconds. A technique [127] based on allowing the servo to “coast” through that
delicate transition period provides a robust solution, albeit one that still relies upon stochastic swinging
of mirrors to bring the degrees of freedom under simultaneous control.

In addition to controlling the longitudinal degrees of freedom, one must also address alignment
of the mirrors, and to a lesser degree, transverse displacement. Wobbling of the mirrors modulates
interferometer gain, leading to non-linear noise. Hence each angular degree of freedom is also servo-
controlled. There are two distinct stages of angular control. The first, which works well for initial control
authority, is based on shining an auxiliary laser on each mirror at a non-normal angle and observing the
transverse displacement of the reflected beam. This “optical lever” method is straightforward and does
not require the longitudinal degrees of freedom to be locked, but it comes with the risk of introducing
extra noise due to the auxiliary laser and due to any ground motion of the external photodiode. The
second angular control method is known as “wave front sensing” and uses the PDH sidebands to sense
the misalignment of optical cavity degrees of freedom [128]. This second method can only be used when
the longitudinal degrees of freedom are locked, at which point it “takes over” from the optical lever (at
least at lower frequencies) after fully recycled lock is achieved. Because the method is based on spatial
asymmetries in carrier-sideband phase differences caused by cavity misalignment, one can obtain a DC
alignment signal without relying on the external reference points that introduce additional positional
noise.

There are also degrees of freedom to control for the input laser light before it impinges on the power
recycling mirror. The laser itself, of course, has servo-controlled mirrors defining the lasing cavities. In
addition, a triangular “mode cleaner” cavity between it and the recycling cavity provides a means to
transmit only a Gaussian wavefront to the main interferometer. The intrinsic frequency stability of the
laser is increased by locking the laser to the interferometer arms. It should be noted that tidal effects
from the Moon and Sun lead to compression and stretching of LIGO’s arms at the level of hundreds
of microns, well outside the dynamic range of the low-noise direct actuation on the mirrors (based on
sending currents through voice coils surrounding cylindrical magnets bonded to the faces of the mirrors
near their edges). To cope with this predictable and very slowly changing disturbance, a feed-forward
actuation is applied via piezoelectric transducers to the positions of the vacuum chambers supporting
the mirrors and to the frequency of the laser via a temperature controlled reference cavity with respect
to which the laser frequency is offset (∼10 pm), via an acousto-optic modulator.

It is beyond the scope of this article to discuss interferometer noise sources in detail [94]. But it is
useful to summarize the primary known contributing sources. Figure 10 shows an example of a LIGO
noise budget graph for the Hanford 4-km (H1) interferometer. At low frequencies (<∼45 Hz), the noise
is dominated by seismic ground motion, despite the strong isolation provided by the multiple stages
of passive oscillators. At high frequencies (>∼100 Hz), sensing shot noise dominates. At intermediate
frequencies important known contributions come from noise coupled to two auxiliary servoed degrees
of freedom, which can be thought of as the positions of the beam splitter and recycling mirrors; from
thermal noise in the suspension wires; from noise coupled to mirror alignment fluctuations (due to
residual beam non-centering); and from current noise in the actuation electronics, which must support
demanding dynamic range requirements [94]. Less important noise contributions come from thermal
noise in the mirrors; from dark-current noise in the photodiodes; from laser frequency noise; from
laser amplitude noise; and from phase noise in the RF oscillator used for PDH locking and for the
heterodyne readout. Some of the noise curves shown in the budget are based on models, while others
can be determined from measured transfer functions.

At the minimum of the noise curve one expects (by design) the most important noise source to be
from the thermal noise of the suspension wires, where there is kBT of vibrational energy over the entire
band. One strives for high mechanical Q’s for the wires so that the bulk of the energy is contained in
a narrow band around the wire resonant frequencies (“violin modes” – ∼350 Hz and harmonics). A
priori predictions of suspension thermal noise are challenging, depending on detailed modeling of the
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dissipative losses in the wire and in the contact points with the mirrors and supports.
There are also electromagnetic environmental effects from ambient power mains magnetic fields,

despite the careful anti-alignments of magnets used in actuation, as suggested from the 60-Hz harmonics
seen in figure 10.

In addition to these mostly well understood noise sources, there were suspected additional techni-
cal sources of noise to account for the difference between measured and expected sensitivity seen in
figure 10. In particular, it is likely that the gap in agreement between ∼40-120 Hz was mainly due
to non-linear upconversion of low-frequency noise. Upconversion can arise, for example, from mirror
wobble, modulated beam apertures, and modulated beam backscattering [129]. Scattering from sur-
faces attached rigidly to the ground is strongly suppressed by elaborate serrated-edge baffling along
the length of beam pipe and in other strategic locations, but even tiny scattering contributions can be
deleterious when the surface is moving relative to the mirrors [129].

More important, however, it is now believed that a substantial contribution to initial LIGO detector
upconversion was Barkhausen noise from interactions between magnetic material used in the mirror
actuation system and the voice actuation coils. The stochastic flipping of magnet domains creates a
fluctuating force contribution. Another likely contributor at times was electrostatic charging of mirrors,
which can lead to fluctuating forces on the mirrors as charges move to reduce local charge density [94].

Other sources of noise come from imperfection in the optical configurations, including small asymme-
tries between the effective reflectivities and losses in the interferometer arms and higher-order Gaussian
modes (carrier and sideband). A particularly troublesome noise source was instability of the recycling
cavity with respect to sidebands. The recycling cavity was nearly flat-flat, leading to intrinsic instabil-
ity (“walk off”) of the beam. Since the sidebands resonated in the cavity, but not in the arms, their
strengths were especially susceptible to misalignment and wobble of the input mirrors, recycling mirror
and beam splitter.

It should be noted that passive isolation did not suffice to enable 24-hour operations at LIGO Liv-
ingston Observatory in Louisiana. The observatory is surrounded by a pine forest used by loggers. The
sawing and removal of trees generated excess seismic noise in the few-Hz band, which the passive mass-
and-spring stacks did little to mitigate and, in some cases, amplified. To cope with this nearly constant
weekday environmental disturbance, an active feed-forward system [130] based on hydraulic actuation
exerted on vacuum chambers, driven by signals from seismometers, geophones and accelerometers was
installed and commissioned, using technology originally developed as part of Advanced LIGO research
and development.

Another technical issue arose from higher-than-expected thermal absorption in the input mirrors of
each arm, causing thermal lensing and degrading the matching of beam shapes into the arm Fabry-Perot
cavities [131]. To cope with this degradation, a thermal compensation system was developed, based on
shining a CO2 laser on the input mirrors so as to compensate the thermal lensing (to lowest order) [132].

Commissioning of the LIGO interferometers required several years, as the sensitivities of the in-
struments approached their designs. The official design requirement [133] was to reach a band-limited
RMS strain in a 100-Hz band as low as 10−21. In addition, a more optimistic aspirational target curve
was produced. Figure 11 [94] shows typical sensitivities of the three interferometers in the S5 data run
(November 2005 - September 2007), along with the target curve. As seen, the final S5 sensitivities of
the two 4-km interferometers did indeed reach the target curve over a broad band and easily achieved
the design band-limited strain in the best (non-contiguous because of 60-Hz harmonics) 100-Hz band.
These measured sensitivities depend in part on a model of the interferometer response to gravitational
waves [134], but primarily upon stimulus-response calibration. Three distinct methods have been used
for calibrating LIGO interferometers [135]: 1) calibration of voice coil actuators via fringe counting in a
simpler, unlocked Michelson interferometer configuration [136]; 2) frequency modulation of the laser in
a 1-arm configuration [137] in which frequency modulation is mapped to length modulation of the cavi-
ties; and 3) calibration from photon radiation pressure using an auxiliary laser in the full interferometer
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Figure 10: Primary known contributors to the H1 detector noise spectrum [94]. The upper panel shows
the displacement noise components, while the lower panel shows sensing noises (note the different
frequency scales). In both panels, the black curve is the measured strain noise (same spectrum as in
Fig. 11), the dashed gray curve is the design goal, and the cyan curve is the root-square-sum of all known
contributors (both sensing and displacement noises). The labeled component curves are summarized in
the text and described in more detail in ref. [94]. The known noise sources explain the observed noise
very well at frequencies above 150 Hz, and to within a factor of 2 in the 40 – 100 Hz band. Spectral
peaks are identified as follows: c, calibration line; p, power line harmonic; s, suspension wire vibrational
mode; m, mirror (test mass) vibrational mode.
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Figure 11: Strain sensitivities (amplitude spectral densities) of the LIGO interferometers during the S5
data run [94]. and Virgo interferometer [94]. Shown are typical high sensitivity spectra for each of the
three interferometers (red: H1; blue: H2; green: L1), along with the design goal for the 4-km detectors
(dashed gray).

configuration [138].

3.3.3 Enhanced LIGO

Following the S5 run, the LIGO interferometers underwent an “enhancement” to improve strain sensi-
tivity by a factor of two in the shot-noise regime. This upgrade was based on increasing laser power
from 6 W to more than 20 W, but a simple increase in power would have led to unacceptably high
noise from higher-order-modes light impinging on the photodetector. To avoid this problem, an “out-
put mode cleaner” (4-mirror bow-tie configuration) was installed between the beam splitter and the
photodetector, to ensure that higher-order modes (carrier and sidebands) were filtered out, leaving only
a clean Gaussian measure of interferometer light [139, 140]. This cleaning method also filters out the
PDH sideband light, preventing those sidebands from being used in the fully null experiment described
above.

Instead, a small, deliberate offset (∼10 pm) was introduced into the differential arm servo so that a
gravitational wave disturbance would lead to a change in intensity of photodetector light (“DC Read-
out”) [140]. Although this technique would seem to lead to the worry of intensity fluctuations in the
laser mimicking a gravitational wave, aggressive gain in the laser intensity stabilization servo allowed
operation in this mode [140]. The Enhanced LIGO upgrades were applied to the Hanford and Livingston
4-km interferometers (H1 and L1) from fall 2007 to summer 2009, with commencement of the sixth sci-
ence run (S6) in July 2009 and completion in October 2010. By the end of the S6 run, the sensitivities
of the interferometers had reached the curves shown in figure 12, with an approximate factor of two
improvement in instantaneous sensitivity above ∼300 Hz, as expected, given the higher laser power. It
had been hoped that noise at lower frequencies would also be reduced after replacement of the primary
actuation magnets, using material with smaller Barkhausen noise [141] (NdFeB replaced with SmCo),
but upconversion noise remained, and it was later hypothesized (but not conclusively established) that
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Figure 12: Typical detector strain amplitude spectral densities for the LIGO S6 and Virgo VSR2/3
runs. From lowest to highest at 102 Hz, the curves are for the LIGO interferometers (H1 and L1) and
Virgo interferometer [143].

magnetized metal components slightly further from the mirrors were the source of the noise [142].

3.3.4 Virgo interferometer

The Virgo interferometer has a quite similar design to that of LIGO and comparable performance. The
primary differences are in the arm lengths (3 km vs. 4 km), laser power (17 W vs 10 W) and in the
seismic isolation. While not as sensitive as LIGO in the most sensitive band near 150 Hz, Virgo is
substantially more sensitive at frequencies below 40 Hz because of aggressive seismic isolation. Virgo’s
mirrors are suspended as 5-stage pendula supported by a 3-legged inverted pendulum [144], a system
known as the superattenuator. This extreme seismic isolation permitted Virgo to probe gravitational
waves down to ∼10-20 Hz, in contrast to LIGO’s ∼40-50 Hz. This lower reach offers the potential to
detect low-frequency spinning neutron stars like Vela that are inaccessible to LIGO. Figure 12 shows
the sensitivity achieved by the Virgo interferometer during the VSR2/3 runs.

3.3.5 GEO 600 interferometer

The GEO 600 interferometer [114] has served not only as an observatory keeping watch on the nearby
galaxy when the LIGO and Virgo interferometers have been down (and serving as a potential confirma-
tion instrument in the event of a very loud event candidate), it has also served as a testbed for Advanced
LIGO technology. With 600-meter, folded (non-Fabry-Perot) arms and a 12-W input laser and built on
a relatively small budget, GEO 600 cannot match the sensitivity of the LIGO or Virgo interferometers,
but it has pioneered several innovations to be used in Advanced LIGO: multiple-pendulum suspensions,
signal recycling, rod-laser amplification, and squeezing. As of 2012, GEO 600 is operating at high duty
factor in “AstroWatch” mode, primarily in case of a nearby galactic supernova, as the LIGO and Virgo
detectors undergo major upgrades.
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3.3.6 TAMA interferometer

The 300-meter TAMA interferometer [113] in Japan was similar to the LIGO detectors (power recycled
Michelson interferometer), but with much shorter arms and comparable laser power, its sensitivity was
limited. Nonetheless, it operated at comparable sensitivity to LIGO in LIGO’s early runs, and joint
data analysis was carried out on S2 data [145, 146]. The Japanese collaboration that built TAMA is
now building the 2nd-generation KAGRA detector discussed briefly below.

3.4 Second-generation interferometers

The LIGO and Virgo detectors are now undergoing major upgrades to become Advanced LIGO [147]
and Advanced Virgo [148]. These upgrades are expected to improve their broadband strain sensitivities
by an order of magnitude, thereby increasing their effective ranges by the same amount. Since the
volume of accessible space grows as the cube of the range, one can expect the advanced detectors to
probe roughly 1000 times more volume and therefore have expected transient event rates O(1000) times
higher than for the 1st-generation detectors.

The key improvements for Advanced LIGO are 1) increased laser power (∼10 W → ∼180 W) with
rod-laser amplification developed by GEO collaborators [149], to improve shot noise at high frequencies;
2) quadruple-pendulum suspensions (also pioneered by GEO) to lower the seismic wall to just above
∼10 Hz [150]; 3) high-mechanical-Q silica-fiber suspension to reduce suspension thermal noise; 4) more
massive, higher-mechanical-Q test-mass mirrors to reduce thermal noise from the mirrors and mitigate
the increased radiation pressure noise from the higher laser power; 5) active, feed-forward in-vacuum
active isolation of optical tables, using accelerometer, seismometer and geophone sensing (supplemental
to hydraulic pre-isolation discussed above which was used already for the Livingston interferometer);
and 6) the addition of a signal recycling mirror between the beam splitter and photodetector [147].
The addition of a signal-recycling mirror with its adjustable relative position with respect to the beam
splitter will give Advanced LIGO some flexibility in its frequency-dependent sensitivity. Figure 13 shows
example design curves for different laser powers and optical configurations.

In the following, the eventual broadband, highest-power configuration labeled “ZERO DET, high
P” in figure 13 will be assumed (non-zero tunings allow shaping of spectral sensitivity to favor certain
bands) . With this improvement in sensitivity, the average NS-NS inspiral range (20 Mpc achieved
in S6) should reach 200 Mpc, while the NS-BH for 10-M� black holes should reach 410 Mpc, and
the corresponding BH-BH range should reach 980 Mpc. The resulting increases in expected detected
coalescence rates will be presented below in section 5.

As of mid 2012, two LIGO interferometers (H1 at Hanford and L1 at Livingston) are under con-
struction. In the original plan a second 4-km interferometer (H2) was to be built at Hanford, but it was
appreciated that moving H2 to another location on the globe would reap great scientific dividends from
improved triangulation of transient sources [151]. One possibility pursued aggressively was placing the
third interferometer in Australia at the Gingin site [152], but the Australian government declined to
provide the funding necessary for civil construction, including buildings, vacuum tube and enclosure,
along with vacuum chambers for the optics. Placing the third interferometer in India was proposed in
parallel [153], and currently is being pursued seriously enough that installation of the H2 interferometer
at Hanford has been suspended and preparations made for transport to India. If all goes well, the Han-
ford and Livingston interferometers will begin operations in 2015, with the third LIGO interferometer
commissioned and operated by the Indian Initiative in Gravitational-wave Observations (IndIGO) by
2020 (although projections for IndIGO are understandably uncertain at this early stage).

While the detailed design parameters for Advanced Virgo are not completely settled, there exists a
baseline design [148]. Its general outlines include: higher laser power and improved thermal noise in
suspensions and test masses. Note that the aggressive passive isolation used already in Virgo means
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Figure 13: Projected Advanced LIGO strain amplitude spectral noise densities for several different
possible configurations [147]. The curve labeled “ZERO DET, high P’ corresponds to the nominal
Advanced LIGO high-power broadband operation. Sensitivity curves are also shown for a lower power
and for sample interferometer tunings that favor certain frequency bands.

that no major changes are expected in order to match the current, already-impressive low-frequency
seismic wall of 10-20 Hz. Ultimate Advanced Virgo sensitivity is expected to be comparable to that of
Advanced LIGO.

In parallel, a primarily Japanese collaboration is proceeding to build an underground 3-km inter-
ferometer (KAGRA – KAmioka GRAvitational wave telescope, formerly known as LCGT- Large Scale
Cryogenic Gravitational Wave Telescope) [154] in a set of new tunnels in the Kamiokande mountain
near the famous Super-Kamiokande neutrino detector. A 100-m prototype interferometer, CLIO (Cryo-
genic Laser Interferometer Observatory) has operated successfully in a shorter Kamiokande tunnel [155].
Placing the interferometer underground dramatically suppresses noise due to ambient seismic distur-
bances. The rigid rock in the base of the Kamiokande mountain suffers much smaller displacements due
to seismic waves than surface soil. Hence the terrestrial gravity gradients due to motion of rock and soil
are much reduced. It is hoped that a first version of KAGRA will be operational for a short run in 2015,
followed by a major upgrade to cryogenic mirrors (at 20 K) to reduce thermal noise due to suspensions
and internal modes and resumption of operations in 2018. In its final configuration KAGRA is expected
to have sensitivity comparable to that of Advanced LIGO.

3.5 Third-generation ground-based interferometers

With construction of second-generation interferometers well under way, the gravitational wave com-
munity has started looking ahead to third-generation underground detectors, for which KAGRA will
provide a path-finding demonstration. A European consortium is in the conceptual design stages of a
10-km cryogenic underground trio of triangular interferometers called Einstein Telescope [156], which
would use a 500-W laser and aggressive squeezing, yielding a design sensitivity an order of magnitude
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better than the 2nd-generation advanced detectors now under construction. With such capability, the
era of precision gravitational wave astronomy and cosmology is expected to open. Large statistics
for detections and immense reaches (∼Gpc) would allow new distributional analyses and cosmological
probes. LIGO scientists too are starting to consider a 3rd-generation cryogenic detector, with a possible
location in the proposed DUSEL facility [157].

3.6 Space-based interferometers

Building interferometers underground offers the prospect of probing frequencies down to ∼1 Hz, but
to reach astrophysically interesting sensitivities at much lower frequencies will likely require placing
interferometers in space. An ambitious and long-studied proposed joint NASA-ESA project called LISA
(Laser Interferometer Space Antenna) envisioned a triangular configuration (roughly equilateral with
sides of 6× 106 km) of three satellites. These spacecraft were to comprise a double quasi-interferometer
system, where each satellite would send a laser to the other two and receive another laser from each,
where each laser would be phase locked to the other two, yielding a total of six phase-locked lasers.
As discussed above, there are many low-frequency gravitational wave sources expected to be detectable
with LISA, and the proposed project has received very favorable review by a number of American
and European scientific panels. Nonetheless the project has been turned down by NASA. Subsequently,
NASA and ESA have solicited separate and significantly descoped new proposals. The funding prospects
for these new proposals are quite uncertain, with ESA having recently passed over a descoped version of
LISA called NGO (New Gravitational-wave Observer) in favor of a mission to Jupiter. A launch before
2020 of any space-based gravitational wave interferometer seems unlikely at this point.

3.7 Pulsar timing arrays

An entirely different effort is under way in the radio astronomy community to detect stochastic gravita-
tional waves by way of precise pulsar timing. Very-low-frequency waves (∼ several nHz) in the vicinity
of the Earth could lead to a quadrupolar pattern in the timing residuals from a large number of pulsars
observed at different directions on the sky [158].

An informative recent review of this approach can be found in ref. [22]. Only a summary of salient
issues is presented here. Galactic millisecond stars provide extremely regular clocks (after correcting
for tiny, measurable spindowns). By measuring a single pulsar over many years, one could, in principle
detect the presence of a very low-frequency stochastic background of gravitational waves affecting the
space between the Earth and the pulsar. In practice, however, with only a single pulsar’s timing
residuals, it is easier to set upper limits than to establish detection.

Hence pulsar astronomers have mounted several systematic multi-year efforts to monitor the tim-
ing residuals of many millisecond pulsars over the sky, to allow a cross-correlation determination of a
∼several-nHz component near the Earth that affects all of the timing measurements. Three collabora-
tions have formed in recent years to carry out the precise observations required: 1) The Parkes Pulsar
Timing Array (PPTA – Australia) [159], 2) the European Pulsar Timing Array (EPTA – U.K., France,
Netherlands, Italy) [160], and 3) the North American NanoHertz Observatory for Gravitational Waves
(NANOGrav – U.S.A. and Canada) [161]. In addition, these three separate efforts have agreed to col-
laborate on joint analysis to improve sensitivity, forming an International Pulsar Timing Array [162].
This work builds upon previous searches for evidence of gravitational waves from pulsar timing residu-
als, including searches for both stochastic radiation [163, 164, 165, 166] and continuous radiation [167]
from a postulated nearby supermassive binary black hole system in 3C66B [168]. The two most recent
stochastic background searches from EPTA [165] and NANOGrav [166] achieve limits on a stochastic
background characteristic strain amplitude in the several-nHz band of O(several × 10−15).
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By continued monitoring of known millisecond pulsars and finding still other stars with small tim-
ing residual, these consortia hope to improve upon current array sensitivity and achieve detection of a
stochastic gravitational wave background. The background from supermassive black hole binaries with
masses of 109−10M� at redshifts z ∼ 1 may lie only a factor of a few below current detection sensi-
tivity [169]. Important to this effort are identifying and mitigating systematic uncertainties in pulsar
timing, of which some are purely instrumental (e.g., radio observatory clock synchronization), some are
terrestrial (e.g., ionosphere effects), and some are astrophysical (e.g., plasma fluctuations in the inter-
vening interstellar medium, variable pulsar torque, and magnetospheric motions of emission regions). A
recent assessment [170] concludes that prospects for substantial improvement in current array sensitivity
depend primarily on the nature of these astrophysical sources of noise. If dominant noise sources are
red and therefore resemble the expected astrophysical background from binary SMBHs, a gravitational
wave signal will be harder to establish than if the astrophysical timing noise is predominantly white. In
that scenario, to establish firm detection and characterize the gravitational wave background requires
50-100 stable millisecond pulsars, a significant increase over the current total among the three major
pulsar timing arrays.

In a more favorable scenario (with respect to noise or signal), however, pulsar timing arrays could well
make the first direct detection of gravitational waves, before the advanced ground-based interferometers
reach sufficient sensitivity.

4 Gravitational Wave Searches with LIGO and Virgo

4.1 Overview of gravitational wave data analysis

In the following, a sampling of results to date from searches in the LIGO S5-S6 and Virgo VSR2 data
will be presented. Searches in data from the early runs (S1-S4, VSR1) will be discussed only briefly.
Analyses of LIGO and Virgo data are carried out by joint working groups focusing on four distinct
source types: 1) compact binary coalescences (CBC), 2) unmodeled bursts, 3) continuous waves (CW),
and 4) stochastic background, in keeping with the waveform categories discussed above in section 2.2.
Results from searches for these four source types will be discussed in turn below. It should be kept
in mind, however, that these types represent archetypal extremes and that some sources fall between
these extremes and can be attacked with complementary methods arising from approaches developed
for the extremes.

Figure 14 shows a schematic outline of the way in which LIGO and Virgo searches can be broken
down. As one moves from left to right on the diagram, waveforms increase in duration, while as one
moves from top to bottom, a priori waveform definition decreases. Populating the upper left corner
is the extreme of an inspiraling compact binary system of two neutron stars in the regime where
corrections to Newtonian orbits can be calculated with great confidence. Populating the upper right
corner are isolated, known, non-glitching spinning neutron stars with smooth rotational spindown and
measured orientation parameters. Populating the lower left corner of the diagram are supernovae,
rapid bursts of gravitational radiation for which phase evolution cannot be confidently predicted, and
for which it is challenging to make even coarse spectral predictions. At the bottom right one finds
a stochastic, cosmological background of radiation for which phase evolution is random, but with a
spectrum stationary in time. Between these extremes can live sources on the left such as the merger
phases of a BH-BH coalescence. On the right one finds, for example, an accreting neutron star in a low-
mass X-ray binary system where fluctuations in the accretion process lead to unpredictable wandering
phase.

Uncertainties in the phase evolution of a gravitational wave affect not only the algorithm used for
a search, but also affect the attainable sensitivity. If one knows the precise evolution of the phase,
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Figure 14: Schematic diagram illustrating the gravitational waveform categories that affect search
strategies. As one moves from left to right, waveforms increase in duration, while as one moves from
top to bottom, a prior waveform definition decreases.

one can apply matched-filter techniques [171] to optimize sensitivity (e.g., highest detection efficiency
for a fixed false alarm rate). But as uncertainty increases, one must search over a larger volume of
parameter space, in which case the signal-to-noise ratio (SNR) required to achieve a fixed false alarm
rate necessarily increases. Roughly speaking, the SNR threshold rises only logarithmically with the
number of distinct search templates, but for many searches, the number of templates searched can be
greater than 1013, leading to a significant degradation in intrinsic achievable sensitivity. In many cases,
however, the requirement of coincident detection in two or more interferometers or the requirement of
signal coherence among interferometers permits a reduction of signal strain threshold (see section 4.2.4).

Requiring coincidence between an interferometer signal and an external astrophysical signal is an-
other powerful way to reduce the search space, in this case the search over start times. For example, a
gamma ray burst trigger permits defining a search window of only a few minutes duration (to allow for
uncertainties in the production mechanism for the gamma rays created in an outgoing jet). The same
principle applies to the Fourier domain, where a search for gravitational waves from a known pulsar
can require precise agreement between electromagnetic periodicity and gravitational wave periodicity.

It should be noted that an alternative tradeoff between sensitivity and parameter volume searched
can be struck by applying generic algorithms that are robust against phase evolution uncertainty. That
is, instead of searching a large number of precisely defined templates, one uses a coarser basis for
which intrinsic SNR is limited. As discussed below, specific examples of the tradeoff between sensitivity
and parameter space searches include searches for late stages of distant compact binary neutron star
coalescences and searches for unknown spinning neutron stars in our own galaxy.

Published and ongoing LIGO and Virgo searches are based on as series of data runs, starting with
LIGO science run S1 in August 2002 and ending with the Virgo VSR4 run in summer 2011. Table 3
lists all of these runs and their durations. While results from searches in the early runs will be discussed
briefly below, the primary focus will be on the results from the LIGO S5 & S6 runs, and the Virgo
VSR2 and VSR3 runs.
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Data Run Period Duration (days)

LIGO S1 August-September 2002 17
LIGO S2 February-April 2003 59
LIGO S3 October 2003 - January 2004 70
LIGO S4 February-March 2005 30
LIGO S5 November 2005 - September 2007 696
LIGO S6 July 2009 - October 2010 470
Virgo VSR1 May-September 2007 136
Virgo VSR2 July 2009 - January 2010 187
Virgo VSR3 August-October 2010 71
Virgo VSR4 June-September 2011 110

Table 3: Data runs taken with the LIGO and Virgo detectors from 2002 to 2011. The LIGO H1 (4
km), H2 (2 km) and L1 (4 km) interferometers were operated in data runs S1-S5, while only H1 and
L1 were operated in the S6 run.

4.2 Searching for coalescences

A variety of searches for coalescences have been carried out in LIGO and Virgo data, with increasing
sophistication, sensitivity and coverage of source parameter space. Here we summarize the search
methods used and the (so-far negative) results of those searches.

4.2.1 Expected inspiral waveforms

As discussed above, the coalescence of two compact massive objects (neutron stars and black holes)
into a single final black hole can be divided into three reasonably distinct stages: inspiral, merger and
ringdown. Let’s first address the problem of detecting the inspiral stage, for which analytic expressions
can be derived in perturbative expansions. Equations (36) and (37) describe the frequency and ampli-
tude evolution of a circular binary of two equal-mass stars. Generalizing this quasi-Newtonian model
to include unequal stellar masses M1 and M2 leads to
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where Mchirp ≡ (M1M2)
3
5 / (M1 + M2)

1
5 is known as the chirp mass. Note that both the frequency and

amplitude evolution depend on the chirp mass; at this level of approximation, one cannot separately
determine the stellar masses M1 and M2.

As the radius of the orbit approaches zero, the above expression breaks down. The stellar velocities
become relativistic, and the Newtonian framework used to derive the relation between ω and the orbit
size no longer applies. In the later stages of the inspiral, further post-Newtonian approximations are
necessary. A review of various approaches can be found in [15]. As one example, the following expression

gives an expansion to seventh order in the dimensionless parameter τ̄ ≡ [5G(M1 +M2) / c3ν(tcoal − t)]
1
8
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for the orbital phase of the system [15]:
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where γ is Euler’s constant, where ν ≡ M1M2/(M1 + M2)2 is known as the symmetric mass ratio
(reduced mass / total mass: 0 < ν ≤ 1

4
) and where this expansion is classified as Post-Post-Newtonian

of order 3.5 in the relativistic velocity parameter (v/c)2. The expression for fGW in equation (74) can be
obtained from the first term of 1

π
dφ/dt. This perturbative expression has terms depending on M1 and M2

in different ways, allowing them (in principle) to be determined separately from measured waveforms, in
contrast to the lowest-order term [equation (74)] where they appear only in the chirp mass combination.
In searches carried out to date, it has been assumed that by the time the binary systems have decayed
to where their gravitational wave frequencies lie in the terrestrial band, their orbits have circularized
enough (because of gravitational wave emission!) that corrections to gravitational waveforms due to
non-zero eccentricity can be neglected. For elliptical orbits, gravitational radiation leads to a more
rapid decrease in eccentricity than in semi-major axis [172, 9]. It has been pointed out, however, that
stellar-mass black holes can be captured in highly elliptical orbits by galactic nuclei, leading possibly
to periodic bursts of gravitational radiation, preceding coalescence [173]. In the case of NS-NS systems,
it has also been assumed that spin effects can be neglected. Corrections due to black hole spin will be
discussed briefly below.

4.2.2 Search algorithm for a coalescence event

Now we turn to how one might measure such a waveform and derive the associated astrophysical
parameters. Unlike the events recorded at a high-energy collider, triggered by, for example, high
calorimeter energy or the presence of hits in an external muon detector, gravitational wave data comes
as a steady stream of digitized data (a time series, commonly known as “one damned thing after
another” [174]). Although details vary among different interferometers, there is typically a primary
gravitational strain channel sampled at 10 kHz or more, accompanied by hundreds or thousands of
auxiliary channels that monitor the state of the interferometer and physical environment, to allow
assessment of the credibility of any detection candidate in the primary channel.

A naive way to search in the data for a waveform, such as that consistent with equation (75),
would be to compute a χ2 or likelihood statistic based on the match between the time series data
and the sum of random noise plus putative waveform, while stepping in time by one data sample each
iteration and searching over a parameter set that describes the waveform. Although this approach
could, in principle, succeed for very strong gravitational wave signals, it is non-optimum because it fails
to exploit the spectral characters of the signal and of the noise. Gravitational wave interferometers
have highly non-white sensitivities, as shown, for example, in figure 11. To increase SNR, one should
emphasize (weight) signal content near the frequencies of best sensitivity (∼100-200 Hz for LIGO &
Virgo) and de-emphasize (de-weight) signal content at other frequencies [171].

Hence Fourier analysis is more natural than time-domain analysis for most waveform searches. It is
beyond the scope of this article to review detection theory in time series data, but a few key concepts
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merit description. For more thorough treatments in the context of gravitational wave data analysis,
see [9] or [8]. For simplicity, continuous data and continuous Fourier transforms will be used for
illustration; the same conceptual framework applies in the use of discrete Fourier transforms to finite,
discretely sampled data. Assume the strain data stream x(t) is a sum of a deterministic signal h(t) and
Gaussian (but not white) noise n(t):

x(t) = h(t) + n(t) (76)

Define the Fourier transform of the data stream:

x̃(f) ≡
∫ ∞

−∞
dt e−2π ift x(t) (77)

and the noise power spectral density:

Sn(f) = |ñ(f)|2, (78)

where it is assumed Sn(f) can be estimated from off-source data (e.g., from neighboring time intervals
when searching for a transient signals or from neighboring frequency bins when searching for a long-lived,
narrowband signal).

One can then define a weighted measure of signal strength vs. time from
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Matched filtering theory [171] then leads to an SNR given by
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, (80)

where the variance parameter:
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is the matched filter output due to detector noise. The detection statistic ρ weights most strongly those
spectral bands where the signal sought is expected to be strong and the detector noise low.

One can also coherently combine the data from multiple interferometers, taking into account the
expected time differences among signals reaching the different detectors for an assumed direction of
the source on the sky. For an all-sky search for an unknown transient, the source location, e.g., right
ascension and declination, add two more parameters to the search space, whereas the direction would
be known a priori for, say, a GRB-triggered search. For example, in the first reported LIGO search for
inspirals [186], a coherent detection statistic was used:

ρ2
coh(t) = maxover tdelay

[ |zL1(t) + zH1(t+ tdelay)|2
σ2

L1 + σ2
H1

]
, (82)

where σ2
L1 and z2

H1 are defined separately for the LIGO Livingston (L1) and Hanford (H1) 4-km interfer-
ometers from equation (81). This statistic implicitly assumes that the L1 and H1 interferometers have
the same antenna pattern sensitivity to a given source, which is a good approximation for most source
directions, since the interferometer arms were designed to align as much as possible, given their 3000-km
separation and the curvature of the Earth. More generally, one must correct for the antenna pattern
differences, which depend not only upon the assumed source location, but also the source orientation.
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Those corrections are especially important when combining data from interferometers distributed widely
on the globe, such as in joint LIGO-Virgo analysis, as discussed in more detail in section 4.3.

For nearly every gravitational wave search carried out to date, there are unknown parameters, e.g.,
chirp mass in an inspiral or orientation of a rotating star, that affect the phase evolution of the putative
source, thereby affecting the integral in equation (79). As a result, one normally searches over a bank
of template waveforms with fine enough stepping in parameter space to maintain satisfactory efficiency,
often characterized by an SNR mismatch parameter that is kept below a certain allowed maximum
value, e.g., 3%.

An additional consideration, specific to inspiral searches, is the range of validity in time of the
assumed waveform. Equation (75), for example, cannot be assumed to hold all the way until coalescence
at t = tcoal (τ̄ →∞). Traditionally, such expressions have been used only up until the “innermost stable
circular orbit,” (ISCO) [10] inside of which the two stars may be said to plunge together in the merger
phase to form a single black hole. This merger phase should provide additional signal for detection, but
it was long assumed that higher-order corrections beyond the reach of post-Newtonian calculations made
it unwise to search explicitly for an assumed analytic waveform model with a coherent continuation of
the matched filter used up until the ISCO.

With recent breakthroughs in numerical relativity, however, it has become appreciated that the
merger phase can sensibly treated as a smooth continuation of the inspiral phase, using effective one-
body theory (EOB) [175], with relatively mild departures until quite late in the merger phase [15]. The
coordinated NINJA effort [33] mentioned in section 2.3 intends to bring these promising developments
to fruition through creation and evaluation of templates for carrying out searches and for parameter
estimation in the event of detection [176].

The final phase of coalescence is the ringdown of the black hole, which is formed with large dis-
tortion and is expected to “shake off” that deviation from axisymmetry about its spin axis through
emission of gravitational waves [15]. These waves can be considered as emission from vibrational quasi-
normal modes (QNM) of the star [177, 178]. The frequencies and damping times of these modes are
determined uniquely by the black hole’s mass and angular momentum. The initial amplitudes of those
modes, however, are governed by the initial conditions forming the hole. Comparison of measured
mode radiation with numerical relativity calculations constrained (to some precision) by the initial
conditions determined from the inspiral phase should allow interesting tests of general relativity in a
highly non-perturbative, strong-field regime.

While initial stellar spin effects are expected to be small for neutron stars [179, 180], they are
expected to induce measurable distortions of waveforms for rapidly spinning black holes [180, 181, 182].
Nonetheless, searches carried out using spinless black-hole templates retain significant sensitivity to
high-spin systems [183].

4.2.3 Coping with data artifacts

Before summarizing the results of searches for coalescences, it is worth noting that in analysis of gravi-
tational wave interferometer data there are many non-ideal considerations that affect search strategies.
The necessity to use spectral weighting of matched-filter templates for the non-white noise spectra has
already been discussed. That technique comes from signal processing theory in which it is assumed the
data is stationary (or at least can be treated as so over time scales long compared to the waveforms
being sought) and Gaussian, e.g., the real and imaginary coefficients in a given frequency bin of a
Fourier transform are distributed normally with zero mean and well defined (but frequency-dependent)
variance.

In reality, data taken with interferometers at the frontier of strain sensitivity rarely display ideal
characteristics. The optics and laser control servos are tuned to minimize stationary noise, but that
tuning can lead to non-robustness against changes in the environment or even in the instrument. An
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important environmental example is ground motion, which can lead to non-linear upconversion of low-
frequency noise into higher-frequency noise in a variety of ways, including modulations of cavity power
via wobbling Fabry-Perot mirrors, inducement of Barkhausen noise through interactions of actuation
currents and magnets, or shaking of surfaces that scatter laser light back into the interferometer. In
some cases such non-Gaussian noise sources are understood and their effects can be modeled, but many
artifacts in the time domain (and to a lesser degree in the spectral domain) are not understood at all and
must be dealt with in an ad hoc, phenomenological manner. When a “glitch” is detected simultaneously
in the gravitational wave strain channel and an auxiliary channel and there is no plausible mechanism
for a gravitational wave to create the auxiliary-channel glitch, then one can sometimes veto the short
interval of strain data affected in one’s search. Ideally, a physical mechanism should explain how the
glitch in the auxiliary channel affects the strain channel, but sometimes the association is established
only statistically from a collection of similar glitches [184]. Considerable effort has gone into carrying
out data quality studies, to allow vetoing that is effective and safe (against false dismissal of signals),
as discussed in references [185], and used in all LIGO and Virgo searches published to date.

Despite this data quality work, however, the data remains contaminated with non-Gaussian artifacts
that can interfere with searches. Hence one must adopt search algorithms that are robust against such
artifacts. As mentioned in section 4.1, coincidence requirements among two or more detectors can
allow search thresholds to be lowered in Gaussian noise, but perhaps more important, such coincidence
is especially effective in coping with non-Gaussian glitches, which can occasionally produce apparent
signals of enormous SNR in a single detector, relative to the ambient near-Gaussian noise characterizing
most of the data. If, for example, the background glitch rate and duration of glitches in detector 1 are
R1 and δt1 (with R1δt1 � 1), and detector 2 has corresponding values R2 and δt2, then the approximate
rate of accidental coincidence is Rcoinc ∼ R1R2(δt1 + δt2), where the coefficient depends on the details
of the coincidence definition. The coincidence rate can be very low. For example for δt1 = δt2 = 10 ms
and R1 = R2 = once per hour, one obtains Rc ∼ 1.5× 10−9 s−1 or about once every 20 years.

How does one accurately estimate such a rate for the complicated coincidence criteria applied in ac-
tual searches, which can use single-interferometer events of fuzzily defined window lengths and matching
criteria based on the similarity of waveform shapes, comparableness of amplitudes, etc.? The technique
used most often to date has been time lag (or “time slide”) background estimation. In this method, one
artificially shifts one interferometer’s data by a set of time strides that are longer than the duration of
signals being sought and measuring the artificial coincidence rate for each time stride. For example, one
might shift the data of interferometer 2 by tlagn = nδt, with n = −N,−(N − 1), ...,−1,+1, ..., N − 1, N ,
giving 2N different rate measures. Thus one has a “black box” measure of not only the average rate of
accidental coincidence, but also its variance and other measures of statistical distribution. Specifically,
one can directly estimate the false alarm rate for different single-interferometer SNR thresholds or even
for criteria depending on measurements in more than interferometer.

There are two important implicit assumptions in this method: 1) there is no preference in the
background (non-gravitational-wave) accidental rate for a time lag of zero; and 2) true gravitational
wave signals are so rare that their contribution to the background estimate through random coincidence
can be neglected. The first assumption is assumed to hold when detectors are far enough apart on
the Earth’s surface that there are no appreciable common and undetected environmental disturbances
consistent with the light-travel-time between the detectors. For the LIGO Hanford and Livingston
detectors, a hypothetical example of such a common disturbance would be a lightning strike in Kansas
creating an electromagnetic glitch that affects the electronics or magnets of interferometers at both
observatories. In fact, the effects of distant lightning have been measured and found negligible. In
addition, magnetometers at each site monitor the environment continuously. A more insidious potential
source of correlated transients are the nearly identical controls and data acquisition systems used at these
two observatories, which are both clocked by synchronized GPS receivers. The precise synchronization
is essential to accurate triangulation of astrophysical sources on the sky, but imperfections in the
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electronics can lead to false coincidences.

The second assumption of a weak gravitational contribution to the background estimate seems rea-
sonable, but in fact, a loud gravitational wave signal in one detector can appear in time-lag coincidence
with an ordinary, weaker glitch in the other detector. While the significance of this lag-coincidence
event may be appreciably weaker than that of the true zero-lag coincidence of the gravitational wave
signal, the significance can also be appreciably stronger than that of all lag-coincidences that involve
no true gravitational-wave triggers. Hence the distribution of combined significance of the estimated
background can be quite distorted, leading to an extraordinarily rare occurrence being ranked as only
moderately rare. One solution to this problem of signal contaminating its own background estimate
is to exclude single-interferometer “foreground” triggers of a given zero-lag candidate from the set of
time-lagged triggers used to estimate its own background. That solution is a clean one – if the candidate
is indeed a true gravitational wave signal, but it has been argued [143] that such exclusion could itself
lead to a bias that overestimates the importance of a coincident candidate, the apparent significance
of which stems primarily from one single-detector instrumental glitch. This dilemma in background
estimation is not an academic one; a deliberately“blind” injection into the LIGO and Virgo detectors
in 2010 revealed its importance, as discussed below.

4.2.4 Coincidence or coherence?

A question that comes up frequently when analyzing data from two or more detectors is whether one
should use a combined detection statistic from all detectors, e.g., Zcombined > Z∗ where Z∗ is a single
threshold, or require separate detection statistics for each detector to exceed separate thresholds, e.g.,
Z1 > Z∗1 and Z2 > Z∗2 and etc.. This issue arises in both transient searches and continuous-wave
searches. There are many ways to combine data and many ways to apply individual criteria, making a
general quantitative answer difficult, even when making optimistic assumptions about the Gaussianity of
the background noise. But as a general rule for Gaussian data, combined detection statistics (especially
when combined coherently to exploit phase coherence present in a signal in all detectors and absent in
the background noise) is statistically more powerful than requiring that individual detection statistics
satisfy individual criteria. To achieve the same false alarm rate in coincidence as in combination typically
sacrifices signal detection efficiency for well behaved data.

Nonetheless, separate detection thresholds are frequently used in gravitational wave searches. Why?
One technical reason is that the computational cost of pursuing candidate outliers can be reduced
with negligible loss in efficiency by applying low individual thresholds as an initial step. But there are
searches for which relatively high individual thresholds are applied, despite an appreciable efficiency
loss. The usual reason for this choice is to cope with non-Gaussian detector artifacts. Nominal false
alarm probabilities for a combined detection statistic can skyrocket if even one detector misbehaves.

One can, of course, impose additional consistency requirements to avoid accepting triggers created
by the coincidence of a large glitch in one detector with a Gaussian excursion in the other, but such
criteria tend inevitably to evolve de facto into the kind of single-detector threshold requirements one
tried to avoid via the combined statistic. It should be pointed out that even within a single detector,
similar considerations apply. For example, in LIGO and Virgo searches for coalescences to date, there
has been a waveform consistency requirement in the form of an additional χ2 statistic [186, 187] that
essentially requires the SNR from different bands of the detector to be consistent, thereby suppressing
triggers due to a single spectral artifact.

One can hope that the elaborate seismic isolation systems of the advanced detectors now being
built will dramatically reduce the glitches tied directly or indirectly to ground motion, allowing more
effective use in the future of truly coherent multi-interferometer detection statistics. But once again,
these interferometers will be pushing the frontier of technology and may well be subject to unexpected,
non-Gaussian disturbances, at least in the initial years.
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4.2.5 Results of all-sky searches for coalescence

Let’s turn now to results from all-sky searches to date for coalescences in interferometer data. Triggered
searches for coalescences from short gamma ray bursts will be discussed in section 4.3. First – there
have been no detections. But the improvements over the last two decades in detector sensitivity have
been dramatic and have been accompanied by substantial improvements in algorithms (including those
to cope with non-Gaussian data). As we approach the advanced detector era, prospects for discovery
look very promising, as discussed below in section 5.

All LIGO and Virgo searches for coalescences to date owe much to a pioneering analysis [188] of 25
hours of data taken in 1994 with the Caltech 40-meter interferometer prototype. Although the detector
sensitivity fell far short of what LIGO achieved later and the observation span was short, the exercise
proved valuable in developing matched-filter approaches to inspiral searches and in learning how to
carry out analysis in glitchy, non-Gaussian data. The 40-meter’s sensitivity was good enough during
the data run to detect NS-NS inspirals in most, but not all of our galaxy. In the end, a 95% CL upper
limit was set on the galactic NS-NS coalescence rate of 0.5 per hour, about eight orders of magnitude
higher than the “realistic” rates quoted in section 2.3. A search [189] in 6 hours of early TAMA 300
data from 1999 yielded a similar limit on coalescence rate of 0.59 events per hour in the galaxy.

A long series of searches for NS-NS inspirals have been carried out in LIGO and Virgo data [186, 190,
191, 192, 193, 194, 195, 143], using the FindChirp algorithm [196] and systematic template banks [197],
starting with the LIGO S1 data, for which event rates limits obtained were O(10+2 year−1·MWEG−1)
and culminating in the joint search of LIGO S6 and Virgo VSR2/VSR3 data, for which resulting event
rate limits were O(10−2·year−1·MWEG−1). In addition, there have been searches for NS-BH and BH-
BH coalescences, sometimes reported in separate publications [198, 199, 200, 201] with divisions based
on the assumed mass range of the binary mass components. In particular, searches for high-mass black
hole systems require special care – the terminal inspiral frequency is low enough that signals tend to
accumulate less SNR in band than a NS-NS inspiral of the same amplitude when entering the band, and
the lower-frequency bands (<∼200 Hz) are typically more non-Gaussian than higher-frequency bands,
leading to more frequent false triggers.

Figure 15 shows the most recent LIGO and Virgo limits [143] on coalescence event rates (in units
of Mpc−3yr−1) for NS-NS, NS-BH and BH-BH systems for a total binary system mass up to 25 M� as
a function of total mass Mtotal, where the individual component masses are allowed to vary uniformly
for each Mtotal. The limits on rate per volume decrease dramatically with increasing total mass, since
the higher masses can be seen to larger distances. These limits are generic in applying to spinless
neutron stars and/or black holes. Figure 15 also shows the resulting marginalized NS-BH limits when
one component mass is restricted to the range 1-3 M�. Figure 16 shows a comparison [143] of the
S6/VSR2/VSR3 limits obtained on NS-NS, NS-BH and BH-BH coalescence rates to the expected rates
summarized in ref. [3], assuming a black hole mass of 10 M�. Limits remain 2-3 orders of magnitude
above realistic expectations and about ten times higher than optimistic rate estimates. Table 4 shows
specific sample numerical rate limits from ref. [143] for nominal neutron star and black hole masses of
1.35 M� and 5.0 M�, respectively.

4.2.6 The Big Dog

In the analysis leading to these results a strong coincidence signal candidate was found in the LIGO H1
and L1 data, with evidence of a weaker signal seen simultaneously in the Virgo data. Reconstruction of
the most likely locations on the sky included a region in the constellation Canis Major, leading to the
informal dubbing of the event as the “Big Dog”. It was known in advance that “blind” signal injections
might be made into the LIGO and Virgo data by a small team sworn to silence until an eventual “opening
of the envelope.” While the signal was strong enough to convince nearly everyone relatively quickly that
it was either a genuine astrophysical event or a blind injection, there were a number of non-trivial issues
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Figure 15: Marginalized upper limits on coalescence rates as a function of mass, based on searches in
LIGO S6 and Virgo VSR2-3 data [143]. The left plot shows the limit as a function of total system mass
M , using a distribution uniform in m1 for a given M . The right plot shows the limit as a function of an
assumed black hole mass, with the companion neutron star mass restricted to the range 1-3 M�. The
light bars indicate upper limits from previous searches. The dark bars indicate the combined upper
limits including the results of the S6 / VSR2-3 search.

to address: the evidence for a signal in Virgo data was much weaker, and its statistical significance
sensitive to how the trigger was combined with data from H1 and L1. There was a substantial glitch
nine seconds prior to the trigger in L1, which led to a worry of a coincidental artifact. Parameter
estimation studies found better agreement of the measured waveform with a lower order phase model
than with the most advanced phase model available. Despite these small inconsistencies and mildly
nagging worries, LIGO and Virgo scientists wrote a polished journal article and voted to submit it for
publication if the envelope proved to be empty.

In the end, of course, the envelope was not empty. The signal was indeed an injected coalescence,
and some of the puzzles seen in parameter reconstruction turned out to arise from slightly out-of-date
software used in the blind injection.

As mentioned above, the detection of this event uncovered an important issue in background estima-
tion, namely whether or not to include the foreground triggers of a coincident candidate in time-lagged

System NS-NS NS-BH BH-BH
Component masses (M�) 1.35 / 1.35 1.35 / 5.0 5.0 / 5.0
Dhorizon (Mpc) 40 80 90
Non-spinning upper limit (Mpc−3yr−1) 1.3× 10−4 3.1× 10−5 6.4× 10−6

Spinning upper limit (Mpc−3yr−1) – 3.6× 10−5 7.4× 10−6

Table 4: Upper limits on NS-NS, NS-BH and BH-BH coalescence rates, assuming canonical mass
distributions [143]. Dhorizon is the horizon distance averaged over the time of the search. The sensitive
distance average over all sky locations and binary orientations is Davg ≈ Dhorizon/2.6[202]. The first set
of upper limits are those obtained for binaries with non-spinning components. The second set of upper
limits are produced using black holes with a spin uniformly distributed between zero and the maximal
value of GM2

BH/c.
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Figure 16: Comparison of coalescence upper limit rates for NS-NS, NS-BH and BH-BH systems [143].
The light gray regions display the upper limits obtained in the S5-VSR1 analysis; dark gray regions
show the upper limits obtained in the S6-VSR2-3 analysis, using the S5-VSR1 limits as priors. The
lower (blue) regions show the spread in the astrophysically predicted rates, with the dashed-black lines
showing the “realistic” estimates [3].

estimates of its own background. In this case the foreground triggers were those outliers seen in true
coincidence in the H1 and L1 interferometers that led to the combined Big Dog candidate. The differ-
ence in estimated false alarm rates turned out to be substantial. Combining the (louder) H1 foreground
trigger with background (time-lagged) L1 triggers led to a conservatively estimated false alarm rate of
1 in 7,000 years. It was not feasible to estimate accurately the false alarm rate when excluding the
H1 foreground trigger (i.e., using only H1 background triggers) simply because no lagged-coincidence
candidates were found to give as high a combined significance as the Big Dog candidate. Figure 17
shows the background estimates with and without including the two H1 and L1 foreground triggers.
An extrapolation of the foreground-less background estimate suggests (but does not establish!) a false
alarm rate about two orders of magnitude lower than 1 in 7,000 years.

The Big Dog exercise was an extreme one in the effort and time devoted to the analysis and writing
of results. But it proved valuable in preparing the collaborations for not only the technical difficulties in
signal detection in multiple interferometers of differing sensitivities and with different idiosyncrasies, but
also for confronting the ambiguities and philosophical issues that arise in establishing a true discovery.
A professional sociologist who has been “embedded” in the LIGO Scientific Collaboration for many
years has documented the Big Dog in a forthcoming volume [203], that continues a recording of the
ongoing process toward eventual gravitational wave detection [204].

Finally, more specialized searches for coalescences have included a search [198] for low-mass (< 1M�)
primordial black holes in LIGO S2 data; a search [182, 199] for binaries with spinning stars in LIGO
S3 data; a search [205, 200] for black hole ring-downs following coalescence in LIGO S4 data; and a
search [201] for modeled combined waveforms corresponding to the inspiral, merger and ringdown phases
of coalescence in LIGO S5 data. In addition, a search [206] was carried out in LIGO S5 and Virgo VSR1
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Figure 17: The cumulative rate of events in the S6 / VSR2-3 coalescence search with chirp mass
3.48 ≤ M/M� < 7.40 coincident in the H1 and L1 detectors, seen in four months of data around
the September 16, 2010 blind injection, as a function of the threshold ranking statistic ρc [143]. The
blue triangles show true coincident events (foreground). Black dots show the background estimated
from an initial set of 100 time-shifts. Black crosses show the extended background estimation from all
possible 5-second shifts on this data restricted, for computational reasons, to only the tail of loudest
events. The gray dots and crosses show the corresponding background estimates when 8 seconds of data
around the time of the candidate are excluded (foreground-less). Gray shaded contours show the 1-5σ
(dark to light) consistency of coincident events with the estimated background including the extended
background estimate, for the events and analysis time shown, including the candidate time.

data for intermediate black hole binaries (Mtotal ≈ 100−450M�) using a polarization-optimized version
of the Coherent Waveburst program discussed below in section 4.3.1.

4.3 Searching for bursts

Searches for unmodeled bursts date from the birth of the gravitational wave detection field with Weber’s
early bar measurements. See Saulson [6] for a discussion of early searches, including some claims
of detection. Until the LIGO interferometers approached design sensitivity, the most sensitive burst
searches were carried out with bar detectors, focused on ∼1-Hz bands near 900 Hz. A notable recent
example was the joint IGEC analysis of data taken in coincidence among the Allegro, Auriga, Explorer
and Nautilus detectors in 2005, leading to upper limits on burst rates of ∼10/year for burst spectral
amplitudes of ∼ 2×10−21 Hz−1, with a threshold corresponding to a false alarm rate of ∼1/century [88].

Searches for unmodeled bursts have been carried out in LIGO and Virgo data for both untriggered
sources anywhere on the sky and triggered transient sources of known sky location and time, in par-
ticular, gamma ray transients detected by satellites. These searches attempt to be “eyes wide open”
in the sense that a variety of different and unpredictable waveforms could be detected with reasonable
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efficiency. Several approaches have been tried, with the community now converging on coherent multi-
detector algorithms that strongly favor consistency among the data sets, but allow for a broad family
of such waveforms. Because one cannot safely apply only matched-filter techniques in these generic
searches, one is more subject to false alarms from instrumental artifacts than, for example, in NS-NS
coalescence searches. Since the LIGO instruments are intended to behave identically, they tend to be
subject to the same classes of glitch phenomena, making work in data quality studies and vetoing all
the more critical. In addition to using external triggers to focus on interesting intervals of data to scru-
tinize, LIGO and Virgo scientists have also begun collaboration with other astronomical collaborations
(electromagnetic and neutrino) to provide prompt triggers based on results of the all-sky searches, to
allow independent confirmation of transient detection and to permit better understanding of source
astrophysics. The effort to use external electromagnetic and neutrino detections to trigger follow-up
gravitational wave searches and vice-versa is part of what has come to be known as multi-messenger
astronomy.

4.3.1 All-sky burst searches

The first published burst search [207] using gravitational wave interferometers was based on a 62-hour
coincident data run taken in 1989 with interferometer prototypes at the University of Glasgow and the
Max Planck Institute for Quantum Optics. The algorithm was based on coincidence of triggers from
each detector, where triggers were based on a generic “boxcar” broadband filter in the Fourier domain.
The upper limits on ambient burst signals were astrophysically uninteresting (h ∼ 10−16), but the
coincidence experiment and broadband analysis were useful forerunners of the observational programs
carried out in recent years by the major interferometer collaborations.

The first published burst search in LIGO (S1) data [208] was also based on coincidence of triggers
in two or more interferometers, where single-interferometer triggers were generated by two distinct
algorithms. The first, called SLOPE [209], used a time-domain filter that amounted to a differentiator
and hence triggered on slope changes inconsistent with ambient Gaussian data. The second, called
TFCLUSTER [210], used clustering of excess power in the time-frequency domain (spectrogram). As
for the first LIGO coalescence search, the burst search used time lag analysis to estimate background.
Limits on astrophysical strain were placed on a family of ad hoc phenomenological waveforms with the
waveform strengths parametrized in terms of the “root sum square of h”, hrss, defined by

(hrss)
2 =

∫
[|h+(t)|2 + |h×(t)|2] dt, (83)

where h+(t) and h×(t) are the “+” and “×” quadrupolar polarizations of the detectable strain wave-
forms. This figure of merit is a proxy for the energy content of a transient wave. Qualitatively, waveforms
of similar spectral power content tend to be detected with comparable sensitivities. When evaluating
the performance of a burst algorithm, it helps to measure the efficiency of detection vs. hrss for different
families of waveforms, with different waveforms within a single family governed by one or parameters.

For example, the first LIGO burst search used two families of waveforms to evaluate performance.
The first family was that of Gaussian bursts defined by

h(t) = h0 e
(t−t0)

2

τ2 , (84)

where t0 is a time of peak amplitude h0, and τ is a parameter defining the waveform’s characteristic
duration. The second family was that of sine-Gaussian bursts defined by

h(t) = h0 sin(2πf0t) e
(t−t0)

2

τ2 , (85)
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where f0 is an additional parameter describing the characteristic central frequency of the waveform.
These waveforms correspond to Gaussians centered on f0 in the Fourier domain with a quality factor
Q = 2πτf0. Although Q was fixed to 2

√
2π in the first LIGO search, it was treated as a free parameter

in later searches.
The most recent all-sky burst search of LIGO and Virgo data (S6 & VSR2-3) [211] used additional

waveform families for evaluating performance. One family resembles the waveform expected from the
ringdown following black hole formation (t > t0):

h+(t) = h0 e
− (t−t0)

τ sin(2πf0t)

h×(t) = h0 e
− (t−t0)

τ cos(2πf0t). (86)

Another family describes “white noise bursts” with uncorrelated, band-limited h+(t) and h×(t) polar-
ization components and Gaussian envelopes in time. Figure 18 shows a sample of waveforms from these
families [211] in both the time domain and time-frequency domain (spectrogram). In addition, a small
family of numerical relativity-derived waveforms [212] of neutron star collapse to a black hole were also
used to evaluate performance, again, via detector efficiency vs. hrss.

Figure 18: Representative waveforms injected into data for simulation studies for the S6 / VSR2-3
run [211]. The top row is the time domain and the bottom row is a time-frequency domain representation
of the waveform. From left to right: a 361 Hz Q = 9 sine-Gaussian, a τ = 4.0 ms Gaussian waveform,
a white noise burst with a bandwidth of 1000–2000 Hz and characteristic duration of τ = 20 ms, and a
ringdown waveform with a frequency of 2000 Hz and τ = 1 ms.

Over the last decade the burst search algorithms have steadily improved, as measured by detection
efficiency vs. hrss, localization of sources on the sky and robustness against noise artifacts. LIGO’s
second all-sky burst search introduced wavelet decomposition (Waveburst) of the data as an alternative
to a strictly Fourier treatment [213]. The deliberate admixture of time and frequency content embodied
in wavelets is well suited to the problem of recovering transient waveforms in data with a smoothly
varying band sensitivity. There were additional improvements in pre-search data conditioning, to remove
stationary and quasi-stationary spectral lines, along with more comprehensive veto studies and waveform
consistency tests based on cross-correlation [214]. Similar searches using the Waveburst program were
carried out in the data of the next three LIGO data runs (S2-S4) [215, 216, 217].

By the time of the 5th science run (S5), the Waveburst algorithm had evolved to a fully coherent
version [218], which carried out an explicit search over possible time delays among interferometers, cor-
responding to putative source sky locations and implemented a maximum likelihood method, including
regulators to disfavor sky locations and polarizations for a given set of data that favor unlikely relative
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Figure 19: Upper limits at 90% confidence on the rate of gravitational-wave bursts at Earth as a function
of hrss signal amplitude for selected sine-Gaussian waveforms with Q = 2

√
2π. The results include all

the LIGO and LIGO–Virgo observations since November 2005.

antenna patterns. The regulation was motivated by single-detector glitches that could be construed as
true gravitational wave signals coming from a particular source location and orientation that leads to
a small antenna pattern sensitivity for all but one detector. For example, an intrinsically strong source
lying near the bisector of a LIGO interferometer’s arms would appear weak to that interferometers, but
possibly strong to the Virgo detector. While physically possible, such events are rare, and suppressing
them leads to a small (and measurable) reduction in efficiency while greatly mitigating false alarms due
to instrumental artifacts. In addition, two alternative algorithmic approaches had evolved in parallel
for use on the S5 data: BlockNormal, described in [219] and Q-Pipeline, described in [220].

All three of these search programs were applied in parallel to the first year of S5 data (LIGO only)
and upper limits reported in ref. [221] for a variety of waveform families and parameters. For the 2nd
year of the run, including five months of coincidence with the Virgo VSR1 run, a burst search was carried
out [222] using three different algorithms: Coherent Waveburst, Ω-Pipeline [220] (improved version of
the Q-Pipeline) and Exponential Gaussian Correlator [223], which is based on a matched-filter search
using a family of templates similar to sine-Gaussians.

The most recently published all-sky burst search (from the LIGO S6 and Virgo VSR2 & VSR3
runs, which strongly overlapped in time), used the Coherent Waveburst program and reached the most
sensitive limits to date on all-sky gravitational wave bursts. Figure 19 shows 90% confidence upper
limits on burst rate vs. hrss for a family of sine-Gaussian waveforms of different central frequencies,
but with a common quality factor Q = 2

√
2π. The best sensitivity is achieved among these waveforms

for a central frequency of 235 Hz, reflecting the best average detector spectral behavior, including
non-Gaussian artifacts.

Other all-sky burst searches in the last decade have included joint searches with the TAMA detec-
tor [146] (in addition to a joint coalescence search [145]), with the AURIGA detector [224] and with the
GEO 600 detector [225]. In addition, there have been special searches for high-frequency bursts [226]
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(central frequency in the range 1 − 6 kHz in S5 data and for cosmic string cusp bursts [227] (see
section 2.4) in S4 data.

4.3.2 Triggered burst searches

Triggered burst searches permit somewhat improved sensitivity compared to all-sky searches. With an
electromagnetic (or neutrino) trigger, one has not only a relatively small time window to search, but
also a direction on the sky with a known antenna pattern sensitivity for each detector for any given
assumed polarization. This knowledge allows significant reduction of the “trials factor” for the search
and hence a significant reduction in the SNR threshold required for a fixed false alarm rate.

The first triggered burst search carried out with major interferometers was for a coincidence between
GRB 030329 (March 2003 coincided with the LIGO S2 data run) and excess power in the Hanford H1 (4-
km) and H2 (2-km) interferometers which were operational during the burst’s electromagnetic detection.
The search was based on excess power in the cross-correlation [228] between the H1 and H2 data in a
three-minute time window, starting two minutes before the detection of the gamma rays by the HETE-
2 satellite [229]. This relatively large time window was meant to be conservative, to reflect potential
uncertainties in gamma ray burst emission models. Naively, one would expect the gravitational wave
burst’s arrival at the Earth to precede that of the gamma rays slightly, as they are likely secondary
particles [230]. Although this GRB was one of the closest with an established redshift from an optical
counterpart [231], it was nonetheless approximately 800 Mpc distant, making its detection extremely
unlikely, especially with the interferometers of S2 sensitivity [232]. No signal was seen, and upper limits

on hrss as low as ∼ 6× 10−21 Hz−
1
2 for sine-Gaussian waveforms were placed.

Subsequent searches for gravitational wave bursts coincident with detected gamma ray bursts have
detected no signals [233, 234, 235, 236], as expected, given detector sensitivities to date. Recent
searches [234, 236] for GW bursts coincident with gamma ray bursts have been carried out with the X-
Pipeline [237], which uses coherent network measures of coherent and incoherent strain energy detected,
along with automated threshold tuning based on measured (non-stationary) noise characteristics. In
addition, explicit searches for compact binary coalescences coincident with the GRBs have been carried
out [235, 236]

An especially interesting gamma ray burst was GRB 070201, a short hard gamma ray burst with a
reconstructed position consistent with M31 (Andromeda). The absence of any plausible signal in LIGO
data [238] at the time of the burst and the nearness of M31 make it very unlikely that the GRB was
a binary merger in M31. More likely it was an SGR giant flare in M31. Another interesting event
coincident with LIGO data taking was GRB051103 which had a triangulated position consistent with
the relatively nearby M81 galaxy (∼ 3.6 Mpc). Again, no evidence was seen [239] of a gravitational
wave burst, strongly suggesting this burst was another giant flare, making it the most distant flare
detected. A much closer giant flare [42] in December 2004 of SGR 1806-20 prompted a search in LIGO
data [240] from the H1 and H2 detectors, which were operating in an astrowatch mode at the time. No
signal was seen, allowing upper limits on the gravitational energy emitted in the flare to be placed of
O(10−8M�c2), comparable to the electromagnetic energy emitted by the galactic neutron star (see also
ref. [241] for a search in Auriga data). Other searches for soft gamma ray repeaters have been carried
out in S5 data [242], and a special search [243] was carried out for the 2006 storm of SGR 1900+14 [244],
using stacking of LIGO data for individual bursts in the storm. Additional electromagnetic triggers
from six magnetars were used as triggers for gravitational wave searches in LIGO, Virgo and GEO 600
data from November 2006 to June 2009 [245]. Similarly, a search [246] was carried out in LIGO data
for a gravitational wave burst coincident with a glitch in the Vela pulsar in August 2006. Finally, a
search [247] was carried out in LIGO and Virgo data for gravitational wave bursts coincident with high
energy triggers in the Antares underwater neutrino detector [248].
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4.3.3 Using gravitational wave candidates as triggers for electromagnetic follow-up

For the LIGO S6 and Virgo VSR2-3 runs, there was a concerted effort to provide prompt gravitational
wave triggers for use in follow-up by electromagnetic telescopes across a broad electromagnetic spectrum
from radio waves to gamma rays. For example, an agreement was reached among the LIGO, Virgo and
Swift satellite [249] collaborations to follow up interesting gravitational wave triggers in the LIGO and
Virgo data with Swift observations using the Swift Target of Opportunity program. In addition to
this target-of-opportunity arrangement with Swift, agreements were made between LIGO/Virgo and a
large number of ground-based astronomical telescopes for rapid follow-up of low-latency gravitational-
wave triggers. In the optical band, agreements were reached with the Liverpool Telescope [250], the
Palomar Transient Factory [251], Pi of the Sky [252] Quest [253], ROTSE III [254], SkyMapper [255],
TAROT [256], and Zadko [257]. In the radio band, an agreement was reached with LOFAR [258].

An important goal for S6/VSR3 was to reach latencies between gravitational wave reception and
external release of triggers of O(hours) or better. That required an aggressive effort not only to collect
data from the LIGO, Virgo and GEO 600 detectors (four sites) in near real-time and carry out computa-
tionally demanding analysis algorithms, but also to gather information on data artifacts rapidly so that
a scientist on call could decide whether or not a signal candidate merited follow-up by electromagnetic
telescopes, in which case an alert was sent to astronomical partners.

A critical consideration in sending out an alert is the directional resolution of the gravitational
wave candidate. To lowest order, that directionality comes simply from triangulation based on time
delays among the interferometers. As discussed in section 3.2, a physically allowed time delay and
uncertainty between a pair of non-colocated interferometers defines a annular ring on the sky. The
intersections of those annuli for all possible detector pairs define preferred regions to search. To next
order, one can use the antenna patterns associated with the different interferometer orientations to
favor one or more intersections over others. The formalism for such triangulation was worked out in
some detail by Gursel & Tinto in 1989 [259] and has received intensive study in recent years with the
active collaboration among major interferometers worldwide and with the prospect of moving one of the
advanced LIGO interferometers to Australia or India (see section 3.4 above). A number of algorithmic
approaches have been tried, including that of Coherent Waveburst [218], described above, in addition to
Ω-Pipeline [220]. Achieved spatial resolutions vary with signal SNR and location, but a rough estimate
for low-SNR signals that could have been seen in the S6/VSR2-3 run was as much as tens of square
degrees. Because an area that large is not well matched to the fields of view of partner telescopes, ranked
tiles on the sky were provided to assist in prioritizing observing time, where ranking could depend on
not only SNR-based likelihood, but also on the existence in a tile of a nearby galaxy.

The software and network infrastructure for low-latency detection among the multiple interferom-
eters became available in December 2009, allowing for a short first observing run December 18, 2009
to January 8, 2010, coinciding with the end of the Virgo VSR2 run. The relatively poor direction-
ality possible with only the two LIGO detectors made release of triggers unattractive during the S6
period between VSR2 and VSR3. The second observing run for external trigger release took place from
September 2, 2010 to October 20, 2010, coinciding with the end of the S6 run. Two trigger pipelines
were used, one based on the Coherent Waveburst program, the other based on a low-latency coalescence
detection baseline called Multi Band Templated Analysis (MBTA) [260]. Two candidates were detected
by the Waveburst program, one on January 7, 2010 and one on September 16, 2010, which was the Big
Dog blind injection discussed above in section 4.2.6.. Three candidates were detected with the MBTA
program and judged to have enough scientific potential to release triggers to partners. One of the MBTA
triggers arrived during a test period and was not sent to partners. Another trigger on October 6, 2010
had a sky location too close to the Sun to permit follow-up. The remaining trigger, which occurred on
September 19, 2010, was released to partners. Results of its image analysis will appear in a forthcoming
publication. Typical delays between apparent signal arrival and the decision on trigger release during
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the run varied from about 20 to 40 minutes. Not all partner telescopes (distributed worldwide) were
positioned to observe favored sky locations for all triggers (or to observe at all if in daylight). The
infrastructure used in the MBTA-based pipeline is described in detail in ref. [261], and the results of
the Swift follow-up exercise described in ref. [262]. Further publications based on the follow-up exercise
with ground-based telescopes are planned.

It was recognized that the chances of successful detection of a gravitational wave transient in the
S6/VSR2-3 runs and its successful electromagnetic follow-up were remote, but mounting of the low-
latency infrastructure and establishing the prototype communication protocols with astronomical part-
ners are expected to pay off in the upcoming advanced detector era, when chances of success will be far
higher and the number of participating partners also higher.

4.4 Searching for continuous waves

As discussed in section 2.5, continuous-wave (CW) gravitational radiation detectable by ground-based
detectors is expected only from rapidly spinning neutron stars in our galaxy. Search strategies for
CW radiation vary dramatically with the a priori knowledge one has about the source. It is useful to
classify CW searches into three broad categories [21]: 1) targeted searches in which the star’s position
and rotation frequency are known, i.e., known radio, X-ray or γ-ray pulsars; 2) directed searches in
which the star’s position is known, but rotation frequency is unknown, e.g., a non-pulsating X-ray
source at the center of a supernova remnant; and 3) all-sky searches for unknown neutron stars. The
parameter space over which to search increases in large steps as one progresses through these categories.
In each category a star can be isolated or binary. For 2) and 3) any unknown binary orbital parameters
further increase the search volume.

In all cases we expect (and have now verified from unsuccessful searches to date!) that source
strengths are very small. Hence one must integrate data over long observation times to have any chance
of signal detection. How much one knows about the source governs the nature of that integration. In
general, the greater that knowledge, the more computationally feasible it is to integrate data coherently
(preserving phase information) over long observation times, for reasons explained below.

In principle, a definitive continuous-wave source detection can be accomplished with a single gravita-
tional wave detector because the source remains on, allowing follow-up verification of the signal strength
and of the distinctive Doppler modulations of signal frequency due to the Earth’s motion (discussed
below). Hence a relatively large number of CW searches were carried out with both bar detectors and
interferometer prototypes in the decades before the major 1st-generation interferometers began collect-
ing data, as summarized in ref. [263]. The most sensitive of the resulting upper limits came from bar
detectors in their narrow bands of sensitivity. The Explorer detector reported [264] an upper limit on
spindownless CW signals from the galactic center of 2.9×10−24 in a 0.06-Hz band near 921 Hz, based on
96 days of observation. A broader-band (∼1 Hz) upper limit of 2.8×10−23 was also reported [265] from
the Explorer detector based on a coherent 2-day search that allowing for stellar spindown. In addition,
searches for spindownless CW waves from the galactic center and from the pulsar-rich globular cluster
47 Tucanae in two 1-Hz bands near 900 Hz were carried out in Allegro detector data, yielding upper
limits [266] of 8× 10−24. Finally, a narrowband (0.05 Hz) search [267] was carried out with the TAMA
interferometer near 935 Hz for continuous waves from the direction of Supernova 1987A, with an upper
limit of 5× 10−23 reported.

4.4.1 Targeted CW searches

For known pulsars with measured ephemerides from radio, optical, X-ray or γ-ray observations valid
over the gravitational wave observation time, one can apply corrections for phase modulation (or,
equivalently, frequency modulation) due to the motion of the Earth (daily rotation and orbital motion),
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and in the case of binary pulsars, for additional source orbital motion. For the earth’s motion, one has
a daily relative frequency modulation of vrot/c ≈ 10−6 and a much larger annular relative frequency
modulation of vorb/c ≈ 10−4. The pulsar community has developed a powerful and mature software
infrastructure for measuring ephemerides and applying them in measurements, using the TEMPO
program [268]. The same physical corrections for Sun and Earth’s motion (and Jupiter’s motion), along
with general relativistic effects including gravitational redshift in the Sun’s potential and Shapiro delay
for waves passing near the Sun, have been incorporated into the LIGO and Virgo software libraries [269].

Three distinct approaches have been used in targeted searches to date: 1) A time-domain heterodyne
method [270] in which Bayesian posteriors are determined on the signal parameters that govern absolute
phase, amplitude and amplitude modulations; 2) a matched-filter method in which marginalization
is carried out over unknown orientation parameters (“F -statistic”) [271]; and 3) a Fourier-domain
determination of a “carrier” strength along with the strengths of two pairs of sidebands created by
amplitude modulation from the Earth’s sidereal rotation of each detector’s antenna pattern (“5-Vector”
method) [272].

Method 1 has been used in all LIGO and Virgo publications to date on targeted CW searches [263,
273, 274, 275, 276, 277], while method 2 was used in the first LIGO targeted search [263] for the rapidly
spinning millisecond pulsar J1939+2134 and (in a different implementation) for the recent targeted
search for the young Vela pulsar [277], along with method 3. The heterodyne method will be described
here for illustration for targeted searches.

For a rotating rigid triaxial ellipsoid (model for a neutron star), the strain waveform detected by an
interferometer can be written as

h(t) = F+(t, ψ)h0
1 + cos2(ι)

2
cos(Φ(t)) + F×(t, ψ)h0 cos(ι) sin(Φ(t)), (87)

where ι is the angle between the star’s spin direction and the propagation direction k̂ of the waves
(pointing toward the Earth), where F+ and F× are the (real) detector antenna pattern response factors
(−1 ≤ F+, F× ≤ 1) to the + and × polarizations. F+ and F× depend on the orientation of the detector
and the source, and on the polarization angle ψ [263]. Here, Φ(t) is the phase of the signal.

The phase evolution of the signal can be usefully expanded as a truncated Taylor series:

Φ(t) = φ0 + 2 π

[
fs(T − T0) +

1

2
ḟs(T − T0)2 +

1

6
f̈s(T − T0)3

]
, (88)

where

T = t+ δt = t− ~rd · k̂
c

+ ∆E� −∆S�. (89)

Here, T is the time of arrival of a signal at the solar system barycenter (SSB), φ0 is the phase of the
signal at fiducial time T0, ~rd is the position of the detector with respect to the SSB, and ∆E� and
∆S� are solar system Einstein and Shapiro time delays, respectively [278]. In this expression fs is the
nominal instantaneous frequency of the gravitational wave signal [twice the star’s rotation frequency
for a signal created by a rotating star’s non-zero ellipticity, as in equations (49-50)].

A complex heterodyne is computed from equation (88) with a unit-amplitude complex function that
has a phase evolution equal but of opposite signal to that expected for the signal from equation (89).
The heterodyne is evaluated and downsampled to measured values Bk at times tk (once per minute) for
the span of the observation time, allowing comparison with expectation for a signal model:

y(tk;~a) =
1

4
F+(tk;ψ)h0(1 + cos2(ι))ei2φ0 − i

2
F×(tk;ψ)h0 cos(ι) ei2φ0 , (90)

where ~a represents the set of signal parameters (h0, ι, ψ, φ0).
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The joint Bayesian posterior pdf for these four parameters is defined by

p(~a|{Bk}) ∝ p(~a)× exp

[
−
∑

k

R{Bk − y(tk;~a)}2

2σ2
R{Bk}

]
× exp

[
−
∑

k

I{Bk − y(tk;~a)}2

2σ2
I{Bk}

]
, (91)

where p(~a) is the prior on ~a, and σ2
R{Bk} and σ2

I{Bk} are the variances on the real and imaginary parts
of the Bk values. Results are insensitive to reasonable choices of the prior distribution for h0 > 0,
while chosen priors on ι and ψ depend on the knowledge (more commonly, the ignorance of) the star’s
spin axis direction, and the prior on φ0 is taken uniform over [0, 2 π]. One can derive posterior pdfs on
any single parameter by marginalizing over the other three (and over any nuisance parameters, such as
instrumental noise [270]):

p(h0|{Bk}) ∝
∫ ∫ ∫

p(~a|{Bk}) dι dψ dφ0, (92)

normalized so that
∫∞

0
p(h0|{Bk}) dh0 = 1. The resulting curve represents the distribution of one’s

degree of belief in any particular value of h0, given the model of the pulsar signal, the priors for the
pulsar parameters, and the data. The width of the curve indicates the range of values consistent with
one’s state of knowledge. In this framework, there is a probability of 95% that the true value of h0 lies
below h95%

0 , where

0.95 =

∫ h95%0

0

p(h0|{Bk}) dh0 . (93)

The first application of this method [263] in LIGO and GEO 600 S1 data (separately to each inter-
ferometer) led to upper limits on h0 of a few times 10−22 for J1939+2134 (frot = 642 Hz). Comparable
upper limits were obtained from the (frequentist) F -statistic method described in section 4.4.2. Later
applications of this method included a variety of improvements, including coherent treatment of mul-
tiple interferometers, marginalization over noise parameters and a Markov Chain Monte Carlo search
method for parameter estimation. At the same time the number of stars searched in each data run
increased, along with closer partnership with radio and X-ray astronomers who provided ephemerides.
In the S2 data, limits were placed on 28 pulsars, with a lowest strain limit of 1.7× 10−24. In the S3 and
S4 data (analyzed jointly), limits were placed on 78 pulsars, with a lowest strain limit of 2.6×10−25. In
the S5 data, limits were placed on 116 pulsars, with a lowest strain limit of 2.3 × 10−26 (J1603-7202).
The lowest limit placed on ellipticity from the S5 search was 7.0× 10−8(J2124-3358). Figure 20 shows
the resulting upper limits on h0 for the 116 pulsars searched in LIGO S5 data, along with results from
the previous S4 search.

To date, the direct spindown limit [equation 52] has been beaten for only the Crab and Vela pulsars.
For the Crab pulsar (fGW ∼ 59.5 Hz), the 95% CL upper limit on h0 (based on LIGO S5 data [276])
stands at 2.0×10−25, implying that no more than 2% of the star’s rotational energy loss can be attributed
to gravitational wave emission. For the Vela pulsar (fGW ∼ 22.4 Hz), the 95% CL upper limit on h0

(based on Virgo VSR2 data [277]) stands at 2 × 10−24, implying that no more than 35% of the star’s
rotational energy loss can be attributed to gravitational wave emission.

4.4.2 Directed CW searches

Unlike targeted searches, where the phase evolution of the signal is (assumed to be) known precisely
enough to permit a coherent integration over the full observation time, in a directed search one has
limited or no information about the phase evolution of the source, while knowing precisely the sky
location of the star. The implied parameter space volume of the search will then depend sensitively
upon the assumed age of the star. For a very young pulsar, one must search over not only the frequency
and first frequency derivative (spindown), but also over the second and possibly higher derivatives.
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Figure 20: Upper limits on h0 for known pulsars from searches in the LIGO S5 data [276]. The gray
band shows the a priori estimated sensitivity range of the search. Also plotted are the limits from the
S3/S4 search [274].

To understand the scaling, imagine carrying out a coherent search, where one wishes to maintain
phase coherence over the observation span Tobs of no worse than some error ∆Φ. From equation (88),
one needs to search over fs in steps proportional to 1/Tobs, over ḟs in steps proportional to 1/T 2

obs, and
over f̈s in steps proportional to 1/T 3

obs. Hence a search that requires stepping in f̈s will have a parameter
space volume proportional to T 6

obs, with search time through the data of length proportional to Tobs

that (typically) entails an additional power of Tobs. Hence, even when the source direction is precisely
known, the computational cost of a coherent search over fs, ḟs and f̈s grows extremely rapidly with
observation time. One can quickly exhaust all available computing capacity by choosing to search using
a Tobs value that coincides with a full data set, e.g., two years. In that case, one may simply choose
the largest Tobs value with an acceptable computing cost, or one may choose instead a semi-coherent
strategy of summing strain powers from many smaller time intervals, as discussed below in the context
of all-sky searches.

Two published directed searches have been carried out to date in LIGO data. The first [275] was an
extremely narrowband search centered on the Crab pulsar’s nominal GW frequency, but allowing for a
relative frequency mismatch of O(10−4), in the event that the gravitational wave emitting component
of the star spins at a slightly different frequency from the electromagnetically emitting component,
while constrained by internal torques that tend to enforce co-rotation. Because of the assumed tight
agreement between electromagnetic and gravitational wave phase evolution, this analysis could scan
over a tiny range in ḟs and fix f̈s, despite searching over a 6-month observation period during the LIGO
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S5 run. A multi-detector implementation of the F -statistic [279] in a search over 3 × 107 templates
yielded an upper limit on h0 five times higher than the corresponding targeted search over the same
data, using the Bayesian heterodyne method described in section 4.4.1.

A second search [280], also based on the F -statistic algorithm, was carried out for the compact
central object (X-ray source) at the center of the Cassiopeia supernova remnant. As discussed in
section 2.5, given the ∼300-year presumed age of the star, one can derive a frequency-dependent upper
limit on its strain emission of 1.2 × 10−24, assuming its rotational energy loss has been dominated by
gravitational wave emission. A coherent search was carried out in a 12-day period of LIGO S5 data
over the band 100-300 Hz, for which it was expected that the age-based limit could be tested with that
data set [281]. The resulting upper limits did indeed beat the age-based limit over that band, reaching
a minimum upper limit of 7× 10−25 at 150 Hz. That the limits were more than an order of magnitude
higher than found in the full-S5 targeted searches for known pulsars in that band reflected not only
the much shorter observation time used (12 days vs. 23 months), but also the higher SNR threshold
necessary to apply when searching over ∼ 1012 templates in fs, ḟs and f̈s for a 300-year old star.

Another proposed approach [282] for directed searches is based on cross correlation of data streams,
similar to the method used in early GRB searches (see section 4.3.2 above) and very similar to a method
used in directional searches for stochastic gravitational radiation (see section 4.5.2 below) except that
it uses finer frequency binning and includes explicit demodulation of Doppler effects. Such a method is
especially robust against wrong assumptions about phase evolution and is attractive in searching for a
very young object, such as a hypothetical neutron star remaining from Supernova 1987A [283].

4.4.3 All-sky CW searches for isolated neutron stars

In carrying out all-sky searches for unknown neutron stars, the computational considerations grow worse.
The corrections for Doppler modulations and antenna pattern modulation due to the Earth’s motion
must be corrected, as for the targeted and directed searches, but the corrections are sky dependent,
and the spacing of the demodulation templates is dependent upon the inverse of the coherence time of
the search. Specifically, for a coherence time Tcoh the required angular resolution is [284]

δθ ≈ 0.5 c δf

f [v sin(θ)]max

, (94)

where θ is the angle between the detector’s velocity relative to a nominal source direction, where the
maximum relative frequency shift [v sin(θ)]max/c ≈ 10−4, and where δf is the size of the frequency bins
in the search. For δf = 1/Tcoh, one obtains:

δθ ≈ 9× 10−3 rad

(
30 minutes

Tcoh

)(
300 Hz

fs

)
, (95)

where the nominal Tcoh = 30 minutes has been used in several all-sky searches to date. Because the
number of required distinct points on the sky scales like 1/(δθ)2, the number of search templates scales
like (Tcoh)2(fs)

2 for a fixed signal frequency fs. Now consider attempting a search with a coherence
time of 1 year for a signal frequency fs = 1 kHz. One obtains δθ ∼ 0.3 µrad and a total number of sky
points to search of O(1014) – again, for a fixed frequency. Adding in the degrees of freedom to search
over ranges in fs, ḟs and f̈s makes a fully coherent 1-year all-sky search utterly impractical, given the
Earth’s present computing capacity.

As a result, tradeoffs in sensitivity must be made to achieve tractability in all-sky searches. The
simplest tradeoff is to reduce the observation time to a manageable coherence time, as was done in an
all-sky search in the 2-month LIGO S2 data (160-730 Hz) based on the F -statistic algorithm, using a
coherence time of 10 hours [286]. It can be more attractive, however, to reduce the coherence time still
further to the point where the total observation time is divided into N = Tobs/Tcoh, segments, each
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of which is analyzed coherently and the results added incoherently to form a detection statistic. One
sacrifices intrinsic sensitivity per segment in the hope of compensating (partially) with the increased
statistics from being able to use more total data. This approach has been used extensively in all-sky
searches. One finds a strain sensitivity (threshold for detection) that scales as the inverse fourth root

of N [285]. Hence, for a fixed observation time, the sensitivity degrades as N
1
4 as Tcoh decreases. This

degradation is a price one pays for not preserving phase coherence over the full observation time, in
order to make the search computationally tractable.

Several semi-coherent algorithmic approaches have been tried, all based on the “Stack Slide” algo-
rithm [287] in which the power from Fourier transforms over each coherently analyzed segment is stacked
on each other after sliding each transform some number of bins to account for Doppler modulation of the
source frequency. One algorithm is a direct implementation of this idea called StackSlide [288]. Another
implementation [289] is based on the Hough transform approach [290], in which for each segment a de-
tection statistic is compared to a threshold and given a weight of 0 or 1. The sums of those weights are
accumulated in parameter space “maps,” with high counts warranting follow-up. The Hough approach
offers, in principle, somewhat greater computational efficiency from reducing floating point operations,
but its greater utility lies in its robustness against non-Gaussian artifacts [284]. A third implementa-
tion, known as PowerFlux [291], improves upon the StackSlide method by weighting segments by the
inverse variance of the estimated (usually non-stationary) noise and by searching explicitly over different
assumed polarizations while including the antenna pattern correction factors in the noise weighting. A
comparison of these three algorithms on the S4 data [284] established a somewhat better detection effi-
ciency for the PowerFlux approach, as one would expect. (More recent work on an alternative approach
to the Hough algorithm suggests improved efficiency can be achieved [292].)

The Hough algorithm was used to produce all-sky upper limits in the 200-400 Hz band of the LIGO
S2 data [285], based on a total of 3800 30-minute segments of data from the three LIGO interferometers.
All three of the above semi-coherent methods were used to produce all-sky upper limits in the 50-1000
band of the LIGO S4 data [284]. The PowerFlux algorithm was used to produce all-sky upper limits
in the 50-1100 Hz band of the first eight months of LIGO S5 data [293]. The sheer length of data for
the full 23-month S5 run required substantial upgrade of the program which was then used to produce
all-sky upper limits in the 50-800 Hz band of the full data set. Figure 21 shows these S5 upper limits
based on a total of more than 80,000 (50%-overlapped) 30-minute segments from the H1 and L1 data. In
this strict frequentist analysis the highest 95% CL upper limit obtained from every sky point searched
is shown for the best-case (circular polarization) and worst-case (linear polarization) assumption for
the source orientation. The most recent PowerFlux result [294] included a follow-up procedure of loud
candidates, based on a “loose coherence” which allows continuous adjustment of the assumed degree of
coherence among Fourier transforms of successive segments of data [295].

These three semi-coherent algorithms compute a detection statistic based on the strain powers
measured in short (30-minute) segments, times over which frequency modulation effects can be neglected
[for a skygrid compatible with equation (94)]. Another approach is to use much longer segments and
construct a coherent demodulated power estimate, using the F -statistic algorithm. This approach has
been taken by the Einstein@Home project. Using the same software infrastructure (BOINC) [296]
developed for the Seti@Home project [297], Einstein@Home encourages volunteers to download narrow-
band segments of LIGO data and carry out a semi-coherent F -statistic search over a small patch of
sky. Results are automatically returned to an Einstein@Home server and recorded, with every set of
templates analyzed independently by host computers owned by at least two different volunteers. LIGO
scientists then carry out post-processing to follow up on promising outliers found. This project has
been remarkably successful in engaging the public (∼225,000 volunteers and ∼750,000 host computers
to date) in forefront science while making good use of idle computer cycles to carry out searches that
would otherwise exceed the capacity of available LIGO and Virgo computers. Two searches have been
published to date, one on the LIGO S4 data set [298] and one on the early LIGO S5 data [299], both
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Figure 21: All-sky upper limits on unknown sources of continuous waves from the LIGO S5 search [294].
The upper (green) curve shows worst-case upper limits (most unfavorable orientation of a linearly
polarized source) in analyzed 0.25 Hz bands. The lower (gray) curve shows upper limits assuming a
circularly polarized source. The values of solid points (marking non-Gaussian behavior) and circles
(marking power line harmonics) are not considered reliable. They are shown to indicate contaminated
bands.

of which achieved comparable sensitivity to other semi-coherent searches while exploring a significantly
larger frequency band (the total computing cost of an all-sky search is roughly proportional to the
cube of the upper frequency bound). Technical constraints in transferring data to host computers
and running on a large variety of computing platforms have limited achievable sensitivity in previous
searches, but new approaches promise improved performance in future searches [300, 301]. In addition,
the eventual incorporation of automated follow-up of outliers on host computers offers the prospect of
fully automated discovery of new continuous wave sources and greatly streamlined post-processing.

It should be noted that the Einstein@Home infrastructure and user base, developed originally for
gravitational wave searches, has now been used successfully to detect pulsars in radio data from the
Arecibo PALFA survey [302] and is being used in searches for gamma-ray pulsars in data from the
Fermi satellite [303]. In addition, some of the search techniques developed for gravitational wave anal-
ysis (hierarchical stages of coherent and semi-coherent methods, along with systematic search template
placement) have been used to improve gamma ray search algorithms and have led to new pulsar dis-
coveries [303, 304].

4.4.4 CW searches for accreting or unknown binary neutron stars

For known binary pulsars with measured timing ephemerides, targeted searches work well, and upper
limits have been reported for many stars, as described in section 4.4.1. But searching for known (possibly
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accreting) binary neutron stars not exhibiting pulsations or for entirely unknown binary stars once again
significantly increases the parameter space, relative to the corresponding isolated star searches, posing
new algorithmic challenges and computing costs.

Because of its high X-ray flux and the torque-balance relation for low-mass X-ray binaries [equa-
tion (55)], Scorpius X-1 is thought to be an especially promising search target for advanced detectors
and has been the subject of searches in initial LIGO data. From equation (55), one expects a strain
amplitude limited by [286]:

h ∼ (3× 10−26)

(
540 Hz

fGW

)
(96)

While its rotation frequency remains unknown, its orbital period is well measured [305], which allows
some reduction in search space. An early F -statistic-based search analyzed six hours of LIGO S2
data [286], using an explicit set of templates in the gravitational wave frequency bands 464–484 Hz and
604–624 Hz as well as the two relevant binary circular orbit parameters of the projected semi-major
axis (in light-seconds) and an orbital reference time for the star to cross the ascending node of the orbit.
This pioneering and computationally limited analysis chose the two restricted search bands based on
the drift range of observed quasi-periodic X-ray oscillations [286].

More recent searches for Sco X-1 have been carried out using cross-correlation methods in direc-
tional searches for stochastic radiation, as described below in section 4.5.2. A potentially more powerful
method based on incoherent summing of orbital sidebands from a coherent search over many orbital pe-
riods has also been proposed [306], along with a frequency-demodulated cross correlation method [282].

It should be stated that obtaining more definitive information on the rotation frequency of Sco X-1
could potentially make the difference between missing and detecting its gravitational waves in advanced
detector data, by reducing the statistical trials factor and thereby the threshold needed to identify an
interesting outlier.

Given the computational difficulty in carrying out a search over the two unknown orbital parameters
of a known binary star with known period and assumed circular orbit, it should come as no surprise
that carrying out a search over three or more unknown orbital parameters for an unknown binary star
anywhere in the sky is especially challenging. Two methods have been proposed for carrying out such
an all-sky binary search, which approach the problem from opposite extremes. The first method, known
as TwoSpect [307] carries out a semi-coherent search over an observation time long compared to the
maximum orbital period considered. Fourier transforms are carried out over each row (fixed frequency
bin) in a ∼year-long spectrogram and the resulting frequency-frequency plot searched for characteristic
harmonic patterns. The second method, known as Polynomial [308], searches coherently using matched
filters over an observation time short compared to the minimum orbital period considered. A bank of
frequency polynomials in time is used for creating the matched filters, where for a small segment of an
orbit, the frequency should vary as a low-order polynomial.

4.5 Searching for stochastic waves

As discussed in section 2.6, stochastic gravitational waves arise from a superposition of incoherent
sources. Because the signal itself is (by definition) random, it is difficult to separate a priori from de-
tector noise, especially given the low strain levels expected and especially for sources, such as primordial
background radiation, assumed to be stationary and isotropic. With a single detector it is challenging
to probe isotropic astrophysical strain noise much below its purely instrumental noise.

Nonetheless, one can carry out searches with surprisingly good sensitivity by exploiting cross-
correlations among different detectors. By incoherent integration of cross correlated power over a long
observation time, one can probe a stochastic strain noise power density well below that of a single detec-
tor. This technique was well established and was used in most searches for gravitational waves carried
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out with bar detectors and prototype interferometers before the commissioning of the 1st-generation
interferometers[309, 310, 311, 312, 313, 314]

4.5.1 Searching for an isotropic stochastic background

In searching for isotropic backgrounds, however, there is an important constraint. The large geo-
graphical separations between detectors, desirable for suppressing common terrestrial noise, also smear
out correlations of detector responses to random, isotropic signals for gravitational wavelengths much
shorter than the detector separations.

To be more quantitative, consider constructing a cross-correlation detection statistic meant to favor
detecting a particular shape to the background radiation spectral density SGW described in section 2.6.
As above, express the detector outputs xi(t) as a sum of instrumental noise n and a gravitational wave
background h:

x(t) = hi(t) + ni(t) (97)

and compute a general cross-correlation [74] between a pair of detectors over an observation time T
centered on zero:

Y ≡
∫ T/2

−T/2
dt1

∫ T/2

−T/2
dt2 x(t1)Q(t1 − t2) s2(t2), (98)

where Q(t1− t2) is a real filter function chosen to maximize the SNR for Y and where Q is appreciably
non-zero only for time differences |t1 − t2| � T . As has been the case for other gravitational wave
searches, working in the Fourier domain proves convenient. In the following, assume [75] the detector
noise is (i) stationary over the measurement time T ; (ii) Gaussian; (iii) uncorrelated among the detectors;
(iv) uncorrelated with the stochastic gravitational wave signal; and (v) much greater in power at any
frequency than the stochastic gravitational wave background. With these assumptions, one can show [74]
that the expectation value µY of Y depends only upon the stochastic signal:

µY ≡ <Y > =
T

2

∫ ∞

−∞
df γ(|f |)SGW(|f |) Q̃(f), (99)

where Q̃(f) is the Fourier transform of Q(t), and γ(f) [real] is known as the overlap reduction func-
tion [315, 316], which characterizes the reduction in sensitivity to an isotropic stochastic background
arising from the separation time delay and relative orientation of the detectors. For co-located and
co-aligned detectors (e.g., H1 and H2), γ(f) = +1 for all frequencies. For separated but co-aligned
detectors, γ(f)→ +1 as f → 0. Figure 22 shows, for example, the overlap reduction function between
the LIGO interferometers at Hanford and Livingston. In this figure γ(f) approaches a negative value
as f → 0 because the Hanford y-arm is parallel to the Livingston x-arm. It fails to reach −1 because
the curvature of the Earth prevents the Hanford x-arm from being parallel to the Livingston y-arm by
about 27◦.

The variance in Y determines a detector pair’s sensitivity to a stochastic gravitational wave back-
ground:

σ2
Y ≡ <(Y− <Y >)2> ≈ T

4

∫ ∞

−∞
df P1(|f |) |Q̃(f)|2 P2(|f |), (100)

where P1(f) and P2(f) are the one-sided strain noise power spectra of the two detectors.

The optimum shape of Q̃(f) depends on the assumed shape of the stochastic gravitational wave
background:

Q̃(f) ∝ γ(|f |)SGW(|f |)
P1(|f |)P2(|f |) . (101)
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Figure 22: Overlap reduction function γ(f) between the LIGO Livingston and the LIGO Hanford
sites [75]. The value of |γ| is slightly less than unity at 0 Hz because the interferometer arms are not
exactly co-planar and co-aligned between the two sites.

Under the assumption (used in many LIGO and Virgo analyses for concreteness) that over the detector’s
band of sensitivity the normalized energy density in stochastic gravitational waves [see equation (56)]
is a constant: Ω(f) = Ω0, then

Q̃(f) ∝ γ(|f |)
|f 3|P1(|f |)P2(|f |) , (102)

and the signal noise ratio has an expectation value [75]:

<ρY > =
µY
σY

≈ 3H2
0

10 π2
Ω0

√
T

[∫ ∞

−∞
df

γ2(|f |)
f 6 P1(|f |)P2(|f |)|

]1/2

. (103)

Implementing a search pipeline to calculate these quantities in interferometer time series data in-
volves a number of technical issues of coherence length choice, windowing and mitigating correlated
instrumental spectral artifacts, such as those that affect continuous wave sources discussed above. It
should be noted that the time lag method of background estimation used extensively in coalescence and
burst searches is also used in stochastic searches as an independent cross check. A good introduction
to these issues can be found in the first LIGO publication [75] reporting an upper limit on an isotropic
stochastic gravitational wave background from the S1 science run. That first limit was an astrophys-
ically uninteresting level of Ω0 < 46 (assuming recent H0 determinations), but the search served as a
valuable pioneering exercise in both data analysis and detector diagnostics for the much more sensitive
searches to follow. With succeeding science runs, the limits on the quantity Ω0 in the LIGO band of best
isotropic stochastic sensitivity (exact band is run-dependent because of frequency-dependent sensitivity
improvements) decreased to 8.4× 10−4 in the S3 data [317], to 6.5× 10−5 in the S4 data [318], and to
6.9×10−6 in the S5 data [80]. Figure 4 (discussed in section 2.6) shows the S4 and S5 limits superposed
together with expectation ranges from different possible backgrounds and limits derived from other
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Figure 23: Strain amplitude spectral noise densities of the individual LIGO interferometers (S5 data)
compared to the upper limits (∼100 × lower) placed on a stochastic gravitational wave background by
cross-correlating the interferometer data [80].

measurements. The S5 limit from LIGO interferometers improved for the first time upon limits derived
from big bang nucleosynthesis [78] and from measurements of the cosmic microwave background [79].

The dramatic improvement in sensitivity to a stochastic gravitational wave background that comes
from cross correlating detector outputs is illustrated in figure 23 which shows typical strain sensitiv-
ities of the three LIGO interferometers during the S5 run, together with the much lower strain noise
corresponding to the limit Ω0 < 6.9× 10−6.

In addition to the above searches carried out using LIGO data alone, there have been two searches
for isotropic stochastic radiation based on cross correlation with other detectors: Allegro and Virgo.
The Allegro bar detector [89] at Louisiana State University collected data simultaneously with the
LIGO S4 run and was located only 40 km away from the Livingston L1 interferometer. This nearness
permits an overlap reduction function as high as 95% in the high-frequency band (∼900 Hz) where
Allegro is sensitive. Although the resulting limits [319] on Ω0 (<∼ 1) were much less sensitive than
those derived from LIGO H1-L1 correlations in the S4 data, the LIGO-Allegro limits were derived from
much higher-frequency data.

The LIGO S5 and Virgo VSR1 data sets were analyzed together [320] in the frequency range 600-1000
Hz, using the additional two detector-pair baselines provided by Virgo (Hanford-Cascina and Livingston-
Cascina). Despite the small overlap reduction functions among these widely separated detectors, the
upper limit of 0.16 on Ω0 was significantly better than that found from the earlier Livingston-Allegro
measurement.

4.5.2 Searching for an anisotropic stochastic background

In addition to isotropic stochastic backgrounds (primordial or from a superposition of astrophysical
sources), there may be point sources or “patches” on the sky from which a stochastic background could
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be detectable. Potentially interesting point sources include known neutron stars and the galactic center.
Potentially interesting patches include our galactic plane or the Virgo galaxy cluster.

Two distinct methods have been used to search in LIGO and Virgo data for a stochastic gravitational
background displaying anisotropy, a background that could go undetected in the isotropic searches
described above. The first, known as the Radiometer method [321], is optimized for point sources.
The second method, which uses spherical harmonic decomposition [322], is better suited to extended
sources. The baseline separation between a pair of detectors defines an effective aperture, which sets a
frequency-dependent limit on source resolution. For a large number of point sources or a small number
of closely spaced point sources, the radiometer method leads to interference which can be negative.
Hence it is not well suited to detecting extended sources.

In the radiometer method, one computes a cross correlation similar to that used in the isotropic
search, but does so for a grid of points on the sky, where for each point on the sky, an explicit correction
(dependent on sidereal time) is made for the time delay between the detectors. Note that the overlap
reduction function that degrades isotropic searches at high frequencies does not affect the radiometer
search, as there is no averaging over different sky directions, although antenna pattern corrections still
must be applied (usually assuming an unpolarized source, for simplicity).

Model-dependent upper limits can be placed on the strain power spectrum from a given source over
the search band. In the first publication using this method on LIGO S4 data [323], sky-dependent upper
limits were placed that ranged from 8.5× 10−49 to 6.1× 10−48 Hz−1. In addition, a direction coinciding
with the LMXB Scorpius X-1 was chosen and frequency-dependent limits placed in terms of its RMS
strain emission hRMS <≈ 3.4× 10−24(fGW/200 Hz) for fGW > 200 Hz.

A recent search [324] in the more sensitive LIGO S5 data used both the Radiometer method and
the spherical harmonic decomposition approach. In the latter approach, one allows for an explicit
(smoothly varying) dependence of the stochastic background strain power spectral density P (f, Ω̂)
upon sky direction:

ΩGW(f) =
2π2

3H2
0

f 3

∫

S2

dΩ̂P (f, Ω̂), (104)

where Ω̂ denotes sky direction. In the S5 search it was assumed that P (f, Ω̂) could be factored into
an angular power spectrum P (Ω̂) and a frequency-dependent factor (f/f0)β, where f0 is a reference
frequency and β is a spectral index. Two explicit values of β were chosen: β = 0 for an astrophysical
source and β = −3 for a cosmological source [324].

The spherical harmonic decomposition is taken to be:

P (Ω̂) ≡
∑

`,m

P`mY`m, (105)

where Y`m are normalized spherical harmonic functions and P`m are the coefficients to be determined
from the data. Since the interferometer baselines place an implicit limit on directional resolution,
the sum over ` is truncated at an `max that depends on the assumed source power spectrum and on
the frequency-dependent effective aperture. In the S5 search, `max was chosen to be 7 for β = −3
and to be 12 for β = 0, the differences reflecting the greater importance of higher frequencies to the
astrophysically motivated β = 0 search. In deriving P`m from the data, technical complications arise
from the deconvolution of sky-dependent cross-correlations, requiring regularization to eliminate low-
eigenvalue contributions, at some expense in signal-dependent bias [324].

Figure 24 shows the SNR maps and resulting upper limit maps on integrated strain power for the
β = (−3, 0) spherical harmonic searches and for the radiometer search. Figure 25 shows upper limit
strain spectra (hRMS) from the S5 radiometer search for the directions of Scorpius X-1, the galactic center
and Supernova 1987A. The limits on Scorpius X-1 strain radiation remain well above that expected from
torque balance [equation (55)], but represent the most sensitive achieved to date.
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Figure 24: Top row: Signal-to-noise ratio sky maps for three different directional searches for stochastic
gravitational radiation: spherical harmonic decomposition for β = −3 (left) and β = 0 (center); and
radiometer point-source search for β = 0 (right) [324]. Bottom row: The corresponding 90% CL upper
limit maps on strain power in units of strain2Hz−1sr−1 for the spherical harmonic decomposition, and
units of strain2Hz−1 for the radiometer search.

5 Summary and prospects

To date no gravitational wave detections have been made. While the Hulse-Taylor pulsar system
gives us confidence that appreciable gravitational radiation is indeed emitted by compact binary star
systems, plausible gravitational wave sources are expected to be weak, and it is unsurprising that
detectors built to date have so far failed to detect them. While not all of the data in hand has been
thoroughly analyzed, particularly for sources for which searches are heavily computationally bound,
such as unknown galactic neutron stars, it seems likely at this point that 2nd-generation (advanced)
interferometers will be required for detection in the 10-10,000 Hz band.

The prospects for detection by these advanced interferometers are bright. For the nominal Advanced
LIGO design sensitivity, realistic NS-NS, NS-BH and BH-BH coalescence detection rates are estimated
to be 40, 10 and 20 per year, respectively [3].

Based on past experience with major interferometers, however, it is nearly certain that these detec-
tors will not simply turn on at design sensitivity. Commissioning is likely to be a painstaking, multi-year
endeavor interspersed with short data runs taken with sensitivity intermediate between 1st-generation
and the design sensitivities for advanced detectors. If the optimistic coalescence rates presented in
section 2.3 are accurate, the first detection could occur in one of those early runs. If the pessimistic
estimates are accurate, then discovery may require several additional years of commissioning, as inter-
ferometers approach ultimate design sensitivities.

Unfortunately, as of mid-2012 the funding prospects for space-based gravitational-wave interferom-
eters are uncertain, at best, despite their tremendous scientific potential.

On a brighter note, there is a serious potential that stochastic or continuous gravitational waves can
be detected at several-nHz frequencies using radio telescopes already operating throughout the world,
with discovery possible sooner in this band than in the higher-frequency band accessible to ground-based
interferometers.

Finally, whether first detection occurs at low or high frequencies, it seems highly likely that in this
decade gravitational wave science will move from its current status of placing occasionally interesting
upper limits on particular sources to making first discoveries and then beyond to becoming not only a
testing ground for fundamental physics, but also a full-fledged field of observational astronomy.
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Figure 25: Upper limits (90% CL) on RMS gravitational wave strain in each 0.25 Hz wide bin from the
LIGO S5 radiometer search [324] as a function of frequency for the directions of Scorpius X-1 (upper
left), the Galactic Center (upper right) and SN1987A (lower left). The previous S4 upper limits for Sco
X-1 [323] are also plotted in the upper left panel.
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