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Introduction : The document presents the surface specifications for the initial LIGO
interferometer arm cavity mirrors. The specifications are divided broadly into three spatial
scales.

20 - 0.3 cm : The spatial scale (large) that primarily determines the cavity field dis-
tribution and thereby the interferometer contrast and one component of the diffractive
cavity losses. Perturbations on scales 2 cm and shorter have diffracted components that
fall outside the mirror radius in the arm cavities.

0.3 - 0.008 cm : The spatial scale (mid) that primarily contributes to the scattered light
in the LIGO beam tubes producing phase noise through modulation by interaction with
the walls and baffles. The mirror perturbation power spectra on these spatial scales are
likely to be the same for all the mirrors so that the primary effect in the arm cavities is
expected to be cavity loss rather than interferometer contrast defect.

≤ .008 cm: The spatial scale (small) which in the LIGO contributes primarily diffractive
arm cavity loss and to the interferometer contrast defect if the power spectrum on these
spatial scales is different for the mirrors in the two arm cavities.

Some of the specifications are inconsistent with each other since they have been arrived at
from different considerations. The specification is then determined by the more rigorous
condition. A specific example are the allowed higher order Zernike amplitudes, these
are larger than the values specified by the surface power spectrum. The inconsistency
comes about because different performance criteria have been used. In the case of the
Zernike decompositions, the interferometer contrast defect is the driver, while for the
power spectrum specification, it is the scattering.

NOTE: A separate issue, not considered in this specification, is the effect from mid and
small scale perturbations on the small beam tests that may be performed in cavity ring
down or laboratory absorption measurements.
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OVERALL LIGO ARM CAVITY PARAMETERS

Optical wavelength: λ = 5.145 × 10−5 cm

Cavity parameters:

Arm cavity length: Larm = 4 × 105 cm
Recycling cavity length: Lrecyl = 1.2 × 103 cm
Radius of arm cavity front mirror: Rfront arm = R1 = ∞ (flat)
Radius of arm cavity back mirror: Rback arm = R2 = 6 × 105 cm
Arm cavity g factor 1: g1 = 1.0
Arm Cavity g factor 2: g2 = 0.333
Gaussian spot radius at front: ω0 = ω1 = 2.15 cm
Gaussian spot radius at back: ω2 = 3.73 cm
Rayleigh range: zr = 2.83 × 105 cm
Radius of recycling mirror: Rrcycl = 6.64 × 107 cm (flat)
Recycling cavity g factor: g = 1 − 1.8 × 10−5 (unstable cavity)

Optical properties (scattering and losses):

Scattering and absorption loss of surfaces: A ≤ 1.0 × 10−4

BRDF of surfaces: dPscat
dΩ∗Pinc

≤ 1×10−6

θ2 sr−1, θ ≤ 6 × 10−3 radians

Loss coefficient of bulk material: α ≤ 3 × 10−6 cm−1

Contrast defect at antisymmetric port: 1 − C ≤ 3 × 10−3

Approximate rms surface error : σrms
λ ≤ 1

400

Optical Properties (reflectivity and transmission):

Reflectivity of recycling mirror: Rrecyl = 0.96 − A

Reflectivity of front arm cavity mirror: Rfront arm = 0.97 − A

Reflectivity of back arm cavity mirror: Rback arm = 1.0 − A

Reflectivity of beam splitter: Rbeam split = 0.5 − A/2
Transmission of beam splitter: Tbeam split = 0.5 − A/2

Optics dimensions:

Arm cavity mirror diameter: D = 25 cm
Arm cavity mirror thickness: t = 10 cm
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SURFACE SPECIFICATIONS

The specifications are presented several ways:

1. Sums of the squares of the amplitudes of ortho-normalized Zernike functions over an
aperture radius of 10 cm.

2. Sums of the squares of the amplitudes of ortho-normalized Zernike functions over a
subaperture radius of 5 cm.

3. Sums of the squares of the amplitudes of the ortho-normalized Laguerre - Gauss func-
tions weighted by the lowest order Laguerre - Gauss function (radial and angular index =
0).

4. The 1 dimensional surface power spectrum in units of waves (5145A)2cm.

5. The 2 dimensional surface power spectrum in units of waves (5145A)2cm2.
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DEFINITION OF TERMS

Zernike decomposition

The Zernike functions are area normalized and real - use sin and cos as the angular func-
tions.

Zn,l,+(r, θ) = Nn,l Rn,l(r) cos(lθ)

Zn,l,−(r, θ) = Nn,l Rn,l(r) sin(lθ)

The Rn,l are the radial Zernike functions.

The Zernike functions are ortho-normal
∫ R

0

∫ 2π

0

Zn,l,±(r, θ) Zj,q,±(r, θ) rdrdθ = δn,jδl,q

where R is the aperture radius. The normalization constant is chosen as

Nn,0 =

√
n + 1

π

Nn,l =

√
2(n + 1)

π

The surface, z(r, θ), is decomposed

z(r, θ)
λ

=
n,l,±∑
0,0

an,l,± Zn,l,±(r, θ)

where the amplitude coefficients are defined as

an,l,± =
∫ R

0

∫ 2π

0

z(r, θ)
λ

Zn,l,±(r, θ)rdrdθ

NOTE: The Zernike functions used in ZYGO interferometer software are not normalized.
The functions all have Nn,l = 1 and are given by a numbering scheme from 1 to 36 that
includes the real functions from n = 0, l = 0 to n = 7, l = 7.

Surface Power Spectra

The power spectra are parametrized by the prescription given in Church, Takacs and
Leonard (SPIE Vol 1165 (1989)) for isotropic fractal surfaces. The one dimensional power
spectrum, determined from data taken along a profilometer scan or a line in an interfero-
metric phase map, is represented by

S1(fx) =
A

(1 + (2πfxlcor)2)
c/2
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The one dimensional power spectrum, S1, and the coefficient A are expressed in units
of (waves (5145A))2 cm. lcor is the surface correlation length in cm. f(x) is the spatial
frequency on the surface in cm−1 also referred to as wavenumbers. The representation
of real surfaces will require different spectral models for the large, mid and small spatial
scales.

The isotropic two dimensional power spectrum associated with S1 is given by

S2(f) =
Γ((c + 1)/2)

Γ(c/2)

√
πlcorA

(1 + (2πflcor)2)
(c+1)/2

f is the isotropic spatial frequency f =
√

f2
x + f2

y . S2(f) is expressed in units of (waves

(5145A))2 cm2

The mirror BRDF depends on the two dimensional power spectrum and optical wavelength

BRDF =
dPscat

dΩ ∗ Pinc
=

16π2

λ2
S2(f)

The grating relations couple the scattering angle and surface spatial frequency. At angles
where θ ≈ sin(θ), the spatial frequency, optical wavelength and the scattering angle are
related as

θ ≈ λf

so that the BRDF can be expresed in terms of the scattering angle (incident beam assumed
at normal incidence to the surface) by

BRDF =
dPscat(θ)
dΩ ∗ Pinc

=
16π5/2

λ2

Γ((c + 1)/2)
Γ(c/2)

lcorA

(1 + (2πθlcor/λ)2)(c+1)/2

The one and two dimensional power spectra are designed to give the same surface variance
in waves2

σ2

λ2
=

∫ ∞

0

S1(fx)dfx = 2π

∫ ∞

0

S2(f)fdf =
A

2
√

π(c − 1)lcor
Γ((c + 1)/2)

Γ(c/2)

The total scattering loss by the surface is related to the surface variance

Ptotal scat

Pinc
= 16π2 σ2

λ2

NOTE: The one dimensional power spectra in some commercial software is given in units
of microns3 and the spatial frequencies are given in microns−1. The two dimensional power
spectra are given in units of microns4. The conversion of the power spectra used in these
specifications to those using microns as the basis are the following:

S1(µ−1) = 2.65 × 103 S1(cm−1)
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S2(µ−1) = 2.65 × 107 S2(cm−1)

Gaussian Weighted Laguerre - Gauss Decomposition

A direct but unconventional specification for resonant cavity performance is the decom-
position of the mirror surface into weighted Laguerre - Gauss functions. These quantities
provide a measure of the amount of excitation into higher order cavity modes by the mirror
surface irregularities when illuminated by the lowest order cavity mode (assumed to be at
a waist on the surface of the mirror). The real Laguerre - Gauss functions are

LGp,m,+(r, θ) =
Mp,m

w0
(
√

2r

w0
)mLm

p (
2r2

w2
0

)e−r2/w2
0 cos(mθ)

LGp,m,−(r, θ) =
Mp,m

w0
(
√

2r

w0
)mLm

p (
2r2

w2
0

)e−r2/w2
0 sin(mθ)

where w0 is the Gaussian waist radius and Lm
p ( 2r2

w0
) are the Laguerre polynomials. The

Laguerre-Gauss functions are ortho-normal

∫ ∞

0

∫ 2π

0

LGp,m,±(r, θ) LGj,q,±(r, θ) rdrdθ = δp,jδm,q

when the normalization constant is chosen as

Mp,0 =
( 2p!
π((m + p)!)3

)1/2

Mp,m =
( 4p!
π((m + p)!)3

)1/2

The Gaussian weighted decomposition components are defined as

bp,m,0,0,± =
∫ ∞

0

∫ 2π

0

LGp,m,±(r, θ)
z(r, θ)

λ
LG0,0(r, θ)rdrdθ

The interpretation of bp,m,0,0,± requires some care since even a perfect surface of finite
radius will give non vanishing values due to the diffraction loss by the finite aperture. With
the parameters of the LIGO cavities and mirror diameters, values of b2

p,m,0,0,± ≤ 1×10−7

on the spherical mirror and b2
p,m,0,0,± ≤ 2 × 10−15 on the flat mirror for p ≤ 20 are

limits due to the finite mirror size.

The most difficult surface specification to meet is the large scale error on the spherical back
arm cavity mirror where the Gaussian spot size is largest in the proposed LIGO cavity
geometry.
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THE SURFACE SPECIFICATIONS

Front arm cavity mirror - flat

Zernike sums over a 10 cm radius aperture

∞∑
n=8

a2
n,0 ≤ (1 − C)

(578)
≤ 5 × 10−6

∞∑
n=18

a2
n,2 ≤ (1 − C)

(288)
≤ 1 × 10−5

∞∑
n=25

a2
n,4 ≤ (1 − C)

(162)
≤ 2 × 10−5

∞∑
n=25

a2
n,6 ≤ (1 − C)

(72)
≤ 4 × 10−5

Zernike sums over a 5 cm radius aperture

∞∑
n=4

a2
n,0 ≤ (1 − C)

(300)
≤ 1 × 10−5

∞∑
n=8

a2
n,2 ≤ (1 − C)

(140)
≤ 2 × 10−5

∞∑
n=10

a2
n,4 ≤ (1 − C)

(80)
≤ 3 × 10−5

∞∑
n=18

a2
n,6 ≤ (1 − C)

(60)
≤ 5 × 10−5

Weighted Laguerre - Gauss sums

∞∑
p=2

p∑
m=0

b2
p,m,0,0 ≤ (1 − C)

4970
≤ 6 × 10−7 p, m even

∞∑
p=1

p∑
m=1

b2
p,m,0,0 ≤ (1 − C)

1264
≤ 2 × 10−6 p, m odd
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Rear arm cavity mirror - spherical

Zernike sums over a 10 cm radius aperture

∞∑
n=8

a2
n,0 ≤ (1 − C)

(960)
≤ 3 × 10−6

∞∑
n=18

a2
n,2 ≤ (1 − C)

(478)
≤ 6 × 10−6

∞∑
n=25

a2
n,4 ≤ (1 − C)

(270)
≤ 1 × 10−5

∞∑
n=25

a2
n,6 ≤ (1 − C)

(120)
≤ 2 × 10−5

Zernike sums over a 5 cm radius aperture

∞∑
n=4

a2
n,0 ≤ (1 − C)

(490)
≤ 6 × 10−6

∞∑
n=8

a2
n,2 ≤ (1 − C)

(230)
≤ 1 × 10−5

∞∑
n=10

a2
n,4 ≤ (1 − C)

(130)
≤ 2 × 10−5

∞∑
n=18

a2
n,6 ≤ (1 − C)

(100)
≤ 3 × 10−5

Weighted Laguerre - Gauss sums

∞∑
p=2

p∑
m=0

b2
p,m,0,0 ≤ (1 − C)

4970
≤ 6 × 10−7 p, m even

Sagitta match of spherical mirrors

∆h

λ
≤ 2.5

√
(1 − C) ≤ 0.1
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Power Spectrum Parameters for Both Mirrors

Spatial frequency range: 3 - 125 cm−1

Power law exponent: c = 1

Correlation length: lcor ≥ 1 × 10−1 cm

Power spectrum amplitude coefficient: A ≤ 2 × 10−8 waves(5145A)2 cm

Surface variance: σ2

λ2 =
∫ 125

1
S1(fx)dfx ≤ 1.4 × 10−7

Surface roughness rms (in band): σ ≤ 2 Angstroms

Spatial frequencies fx ≥ 125 cm−1

Surface variance: σ2

λ2 =
∫ ∞
125

S1(fx)dfx ≤ 1 × 10−6
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