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~100 years since 1916
• B modes in the Cosmic Background

– periods of 1010 years
• Timing with millisecond pulsars

– periods of ~ year
• LISA

– periods of hours to minutes
• Ground based interferometers

– periods of 100 to 0.1 milliseconds



Outline

• Current state of the detectors
• Steps to improve the sensitivity 
• Modes to run improved detectors
• Detection of NS/NS coalescences



Talks at GR19 on ground based detectors

Thursday Afternoon Sessions C1 and C3
• A. Krolak 14:00  Status of Virgo
• V. Frolov 14:30  Status of LIGO
• J. Hough 15:00  GEO 600
• S. Miyoki 15:30  CLIO
• P. Fritschel 16:30  Advanced LIGO
• S. Miyoki 17:00  LCGT
• T. Corbitt 17:30  QND Experiments
• Y. Chen 18:00  QND Theory
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Broad overview of the projects
• GEO

– Developed :fused silica suspensions,signal recycling
– Future: squeezed light interferometry, high frequency 

detection
• CLIO/LCGT

– Current and future: cryogenic suspensions and 
optics,underground operations

– Future: long baseline cryogenic underground detector
• ACIGA/AIGO

– Current: study of high power, parametric instability
– Future: 4km detector

• VIRGO 
– Advanced detector

• LIGO
– Advanced detector



Mostly idealized and fundamental noise
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Program of detector improvements

• Major steps between initial and advanced LIGO
– Increase laser input power 10 to 180 watts in stages
– Incorporation of an output mode cleaner
– Output optics and electro-optics chain in vacuum
– DC (carrier offset) “modulation” technique
– Reduction in thermal noise

• Steel wire to fused silica fiber suspension elements
• Lower mechanical dissipation optical coatings
• Larger fused silica test masses : 10 kg to 40 kg

– Improved active seismic isolation – extend sensitivity to 15Hz
– Tunable dual recycling interferometer configuration
– Quantum limited operation over significant band 
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Systems: Interferometer Design
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Advanced LIGO broadband operational modes

P.Fritschel Advanced LIGO Systems Design (2009)



Classes of sources and searches
• Compact binary inspiral: template search

– BH/BH
– NS/NS and BH/NS

• Low duty cycle transients: wavelets,T/f clusters
– Supernova
– BH normal modes
– Unknown types of sources

• Triggered searches
– Gamma ray bursts
– EM transients

• Periodic CW sources
– Pulsars
– Low mass x-ray binaries (quasi periodic)

• Stochastic background
– Cosmological isotropic background
– Foreground sources : gravitational wave radiometry

inspiral S5

P. Brady Plenary talk 
on Friday

Session C2 Friday





R = horizon distance
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MWEG/Mpc3 = 0.012

Conditions:

False alarm rates reduced 
to Gaussian statistics.

Coherent detection
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Physical Environment Monitoring
• Seismic motion

– xyz seismometer/building
• Motion of test mass chambers

– xyz accelerometers/chamber
• Acoustic excitation

– microphone/building
• Magnetic fields

– xyz magnetometer/building
– xyz high sensitivity coil/site

• Radio Frequency interference
– multiband 30kHz -100MHz receiver/site

• Main AC power monitor
– 3 phase monitor/building

• Muon shower detector
– scintillator-PM tube/site





Spare  slides follow







NS/NS binary inspiral triggers in the year 1 of S5 in L1 and H1

Jake Slutsky LSU
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