
APPENDIX B

INTERFEROMETER CONCEPTS AND NOISE

This appendix provides some analytic basis and further explanations for the
concepts introduced in Section III. The subjects discussed are

1. The theory of the Fabry-Perot Cavity
2. The transfer function of an interferometric gravitational wave detector
3. Basic optical concepts including the RF phase modulation of the optical beams
4. The physical basis of some of the noise terms

There is an extensive published literature on these issues [B–1]. We include a
discussion of them here for the sake of completeness of the proposal.

1. The Theory of the Fabry-Perot Cavity.
In a gravitational wave interferometer each arm’s Fabry-Perot cavity is a light

storage element. The input mirror, in the interferometer corner station, is partially
transmitting with an intensity transmission coefficient of T1 = (1−R1−A1) . Here
A1 is the mirror’s optical absorption and R1 is its intensity reflection coefficient.
The rear mirror, which is in one of the interferometer’s end stations a distance L
from the input mirror, is coated for high reflectivity, R2 = (1 − A2) ≈ 1, i.e. for
negligible transmission. The electric field reflection and transmission coefficients of
each mirror, r1, r2, t1, t2 are equal to the square root of the intensity coefficients;
the reflection coefficients have opposite sign depending on whether the incident
beam approaches the reflecting surface from the substrate side or from the vacuum.

When an optical electric field pulse of unit amplitude is incident on the cavity
input mirror, a set of pulses is returned from the cavity. Figure B–1a shows the
time series of these pulses. The first pulse, reflected by the input mirror, returns
immediately and has an amplitude of r1. The second pulse, reflected once by the
rear mirror where it is inverted in sign, arrives a time 2L/c later and is reduced
in amplitude to r2t1t1 as a result of two transmissions through the input mirror
and one reflection off the end mirror. Subsequent pulses undergo reflections from
both mirrors and are delayed in time by n2L/c where n is the number of round
trips in the cavity. The pulses become progressively smaller and have amplitudes
t1t1r2(r1r2)n. The sum of all these pulses is the cavity’s “reflected electric field
impulse response” (Green’s function), and is given algebraically by

hR(t) =
ER(t)
E0

= r1δ(t)− t1t1r2

∞∑
n=0

(r1r2)nδ
(
t− 2L(n+ 1)

c

)
. (B.1)

The response of the cavity for an arbitrary incident electric field is the convolution
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of the impulse response with the incident field.

ER(t) =

t∫
−∞

hR(τ)Einc(t− τ)dτ.

If the input light has a sinusoidal dependence, Einc(t − τ) = E0e
iω(t−τ), the

convolution gives the cavity’s reflection transfer function:

Er(t)
Eo

= eiωt
[
r1 − t1t1r2 e−i2ωL/c

∞∑
n=0

(r1r2)n e−i2ωnL/c
]
. (B.2)

Since |r1r2| < 1 the series can be summed:

Er(t)
Eo

= eiωt
[
r1 −

t1t1r2 e
−i2ωL/c

1− r1r2 e
−i2ωL/c

]
= eiωt

[
r1 − r2(r2

1 + t21) e−i2ωL/c

1− r1r2 e
−i2ωL/c

]
. (B.3)

Figure B–1b, a phasor diagram, shows how the convolution produces the re-
flection transfer function of the cavity. The resultant field is made up from the
superposition of the individual waves from the multiple reflections described in Fig-
ure B–1, (a). The net reflected electric field is the distance from the origin, the
center of the circle, to the end point of a trajectory indicated by a progression of
dots. The phase of the net reflected field is the azimuthal angle around the circle
with zero degrees being to the right. Each trajectory, associated with a specific
value of x = (2ωL/c) − (2ω0L0/c), begins at the point marked by ∗ which repre-
sents the first term in the series: the initial reflection from the input mirror. Along
any one trajectory the distance between dots is proportional to the magnitude of
the individual reflected components. The angle of each line segment between dots,
relative to the horizontal, is the phase of the individual reflected wave. The trajec-
tory labeled x = 0 is the resonance case, with cavity length equal to a half integral
multiple of the laser wavelength. Going to the left one sees the individual reflections
adding up coherently with the resultant field being almost equal to the incident field
but shifted in phase by 180 degrees providing the cavity losses are small. In a low
loss cavity, the component of the field emerging from the cavity is almost twice the
incident field. As the cavity is moved away from resonance, x 6= 0, by a change in
length, the phase of the net reflected wave changes; this phase shift is proportional
to an incident gravitational wave. The change in net phase produced by a unit
change in cavity length is a maximum at resonance. At large values of x, far from
resonance, the phase of the successive individual waves changes rapidly and the
phase of the resultant reflected field changes little with a change in x. The entire
cavity then behaves just like the input mirror without a cavity behind it.
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The light storage time of the cavity is then

τs =
τt

1− |r1r2|
≈ 2L
cT1

(B.4)

where τt = L/c is the one-way transit time in the cavity. The change in optical
phase of the reflected field for a unit change in cavity length near resonance is

∆ϕ
∆L
∼= −16π
λoT1

[
1− (A1+A2

T1
)2
] ≈ −8π

λo

τs
τt
. (B.5)

The amplitude of the net reflected field at cavity resonance is

Er
E0

= 1− 2(A1 +A2)
T1

(B.6)

when the mirror optical losses are much smaller than the input mirror transmission.

2. The Gravitational Wave Transfer Function of the Interferometric
Detector.

This section outlines the response of an interferometric gravitational wave de-
tector (“interferometer”) that uses Fabry-Perot cavities as the optical storage ele-
ments. We compute the responses to a sinusoidal wave incident from an arbitrary
direction. The end result is the “transfer function” of the interferometer, defined as
the complex ratio of the optical phase shift at the output (the antisymmetric port)
of the interferometer at the gravitational wave frequency, f , to an excitation by a
gravitational wave with amplitude h at frequency f .

In our calculation the interferometer masses are idealized as free (a good ide-
alization above the resonant frequencies of the mass suspensions). The masses then
travel along geodesics of the spacetime, which are distorted by the gravitational
wave. We perform the calculation in “transverse traceless (TT) coordinates” [B–
2]. In these coordinates the masses are forever at rest (x,y,z are constant on their
geodesic world lines), and their coordinate separations are forever constant. How-
ever, the gravitational wave perturbs the metric of spacetime, thereby altering the
masses’ physical separations.

One interferometer mass is located at the origin and the other two are situated
a distance L on the the x and y axes. The metric tensor is

gij = ηij + hij(t, ~r) (B.7)

where ηij is the flat spacetime Minkowski metric and hij(t, ~r) is the metric pertur-
bation produced by the gravitational wave. In TT coordinates hij is purely spatial
(htj = 0), and the components that are relevant to our calculation are [B–2]

hxx = h Gxxe
(i~k·~r−iωt), hyy = h Gyye

(i~k·~r−iωt) (B.8)
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where

Gxx ≡ cos 2 Ω (cos2 φ− sin2 φ cos2 θ) − sin 2 Ω sin 2φ cos θ

Gyy ≡ cos 2 Ω (sin2 φ− cos2 φ cos2 θ) + sin 2 Ω sin 2φ cos θ.
(B.9)

Here h is the gravitational wave strain in the plane perpendicular to the propagation
direction and ~k is the wave vector,

~k =
ω

c
( sin θ sinφ~x − sin θ cosφ~y + cos θ~z ). (B.10)

The polarization of the wave is specified by the angle Ω. We can think of Ω = 0 as
being the + polarization state and Ω = π/4 as being the × state.

Now consider a photon traveling between the central mass and the mass located
at x = L. The equation ds2 = gijdx

idxj = 0, which expresses the fact that the
photon travels at the speed of light, takes the following form, accurate to first order
in the wave amplitude h:

c
dt

dx
= ±(1 + 1

2hxx). (B.11)

By integrating this equation along the photon’s world line as it travels from
the central mass at time t0 to the end mass and back, we obtain for the time t of
its return to the central mass

t = t0 + 2τt +
τthGxx

2
H(ω, kx)e−iω(t0+τt). (B.12)

Here τt = L/c,

H(ω, kx) = sinc1
2 (kxL−ωτt)e

i
2 (kxL+ωτt) + sinc1

2 (kxL+ωτt)e
i
2 (kxL−ωτt), (B.13)

and sinc z = sinz/z.
A similar calculation is carried out for the light leaving the central mass at

time t0 that travels back and forth along the y direction. The difference in transit
time for the two paths is given by

∆t =
hτt
2
[
GxxH(ω, kx) − GyyH(ω, ky)

]
e−iω(t0+τt). (B.14)

Because the gravitational wave has htt = 0 and the central mass remains always
at rest in the coordinate system, this ∆t is equal to the proper time difference as
measured by a physical clock riding on the central mass. The optical phase shift at
the antisymmetric port of the interferometer due to to this time difference is

∆φ(1) = ω∆t =
2πc∆t
λ

(B.15)
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where λ is the optical wavelength.
For the Fabry-Perot cavity the procedure is applied iteratively to the terms that

transit the cavity multiple times. When the cavity is on resonance the unperturbed
phase shift for each transit is a multiple of 2π. The perturbed phase shifts are small
enough so that ei∆φ

(1)
is well approximated by 1 + i∆φ(1) and can be summed over

the infinite series of transits.

After some algebraic manipulation, the transfer function of the recombined
Fabry-Perot interferometer is found to be given by

φ(f)
h(f)

=
4πcτ2

t

λτs

[
GxxH(ω, kx)−GyyH(ω, ky)

]
×
(

eiωτt

1− 2(1− τt/τs)eiωτt cos(ωτt) + (1− τt/τs)2ei2ωτt

) (B.16)

The transfer function simplifies at low gravitational wave frequencies, f <
1/4πτt, and for optimal source direction (θ = φ = 0) and polarization (Ω = 0). For
this case it is

φ

h
(f) ≈

(
8πcτs
λ

)
1(

1 + (2ωτs)
2
)1/2

. (B.17)

At other angles of incidence the angular dependence of the interferometer is pri-
marily determined by Gxx −Gyy.

Figure B–2 shows the amplitude response of an interferometric gravitational
wave detector as a function of the propagation direction of the wave relative to the
plane of the detector. The response has been averaged over the wave polarization
angle (Ω).

3. Basic Optical Concepts and RF Phase Modulation.

In this section a rudimentary description of the basic optical concepts of an
interferometer, such as that shown in Section III, Figure III–1, is given. The analysis
makes many simplifying assumptions, the most important being that only a single
mode and polarization of the light are considered. The Fabry-Perot cavities are
assumed to be close enough to resonance that their phase response can be linearized,
and the RF modulation has small enough amplitude that it too can be linearized.

The analysis is intended to show the steps involved in the propagation of the
optical wave field from the beam splitter, through the RF phase modulators, reflec-
tion from the Fabry-Perot cavities, to recombination at the second encounter with
the beam splitter, and finally to the photodiode at the antisymmetric port of the
interferometer, which monitors the output signal of the system.
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where the + sign is used in arm 1 and the − sign in arm 2. The wave fields after
the phase modulator are

E11 =E0rse
i(Γ sin(ωmt))e−i(ωt−δ11)

E21 =E0tse
−i(Γ sin(ωmt))e−i(ωt−δ21)

(B.21)

in arms 1 and 2, respectively.
The complex exponentials with sinusoidal arguments are most conveniently

expanded in terms of Bessel functions of the first kind

eiΓ sin(ωmt) =
∞∑

n=−∞
Jn(Γ)einωmt ≈ J0(Γ) + J1(Γ)

(
eiωmt − e−iωmt

)
+ · · · (B.22)

This expansion explicitly expresses the phase modulation in terms of a set of side-
bands of the main optical carrier wave. This is a useful representation with which
to calculate the reflection from the Fabry-Perot cavities and is shown graphically in
Figure B–3.

To first order in the modulation, the waves incident on the Fabry-Perot cavities
are rewritten as

E12 =E0rs
[
J0(Γ) + J1(Γ)

(
eiωmt − e−iωmt

)]
e−i(ωt−δ12)

E22 =E0ts
[
J0(Γ)− J1(Γ)

(
eiωmt − e−iωmt

)]
e−i(ωt−δ22),

(B.23)

in arms 1 and 2, respectively.
The reflection coefficients of the cavities given by Equation B.3 are rewritten

in terms of an amplitude and phase

rj = Aj(ωj , ωl)eiφj(ωj ,ωl) (B.24)

The index j takes on the value 1 or 2 indicating the cavity, ωj is the resonance
frequency of the cavity and ωl is the frequency of the light. The gravitational wave
affects the phases φj .

The waves after reflection from the cavities become

E13 =E0rs
[
J0(Γ)A1(ω1, ω)eiφ1(ω1,ω) + J1(Γ)

×
(
A1(ω1, ω + ωm)eiφ1(ω1,ω+ωm)ei(ωmt+δ1+)

−A1(ω1, ω − ωm)eiφ1(ω1,ω−ωm)e−i(ωmt−δ1−)
)]
e−i(ωt−δ13) (B.25)

in arm 1 and

E23 =E0ts

[
J0(Γ)A2(ω2, ω)eiφ2(ω2,ω) − J1(Γ)

×
(
A1(ω2, ω + ωm)eiφ2(ω2,ω+ωm)ei(ωmt+δ2+)

−A2(ω2, ω − ωm)eiφ2(ω2,ω−ωm)e−i(ωmt−δ2−)
)]
e−i(ωt−δ23) (B.26)
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+ sign is associated with one cavity and the − sign with the other. The phase shift
is first order insensitive to the losses in the cavities but the reflection amplitudes at
resonance are first order sensitive to the cavity losses. The reflection amplitudes at
resonance may be expressed as A1(ω1, ω) = A0(1 + ∆), A2(ω2, ω) = A0(1 − ∆),
where A0 is the average reflection amplitude of the two cavities at resonance and 2∆
is their difference due to any asymmetries in the cavities. The RF frequency, ωm,
is usually chosen so that the optical sidebands fall outside the cavity resonances.
Then the cavity’s input mirror reflects the sidebands with Aj(ωj , ω ± ωm) ≈ 1 and
φj(ωj , ω ± ωm) � 1. The propagation phase shifts for the sidebands, δk± ,are
assumed close to multiples of 2π, which is accomplished by a proper choice of ωm
knowing the path lengths in the interferometer.

With these assumptions the wave fields at the antisymmetric and symmetric
ports become

Eanti = −2
√
RTE0

[
J0(Γ)A0

(
i sinφ+ ∆ cosφ

)
− 2iJ1(Γ) sinωmt

]
Esym = −E0

[
J0(Γ)A0

(
cosφ((R+ T ) + ∆(R− T ))

+ i sinφ((R− T ) + ∆(R+ T ))
)

− 2iJ1(Γ)(R− T ) sinωmt
]

(B.27)

where R = r2
s and T = t2s are the intensity reflection and transmission of the

beam splitter. These fields are shown in Figure B–3. Terms that oscillate at the
modulation frequency are shown with dashed lines.

The intensity is proportional to the envelope of the field given by I = |E|2.
The intensity at the output photodetector (antisymmetric port) becomes

Ianti(t) =4RTE2
0

[
J2

0 (Γ)A2
0(sin2 φ+ ∆2 cos2 φ) + 2J2

1 (Γ)

+ higher order time independent terms
]

− 4RTE2
0

[
4J0(Γ)J1(Γ)A0 sinφ sinωmt− 2J2

1 (Γ) cos 2ωmt

+ higher order time dependent terms.
]

(B.28)

The interferometer output signal is the term associated with sinωmt, which
after synchronous demodulation and for φ < 1 is linearly proportional to φ, the
gravitational wave induced phase shift. The time independent terms make up
the background light on the photodetector. They are important in estimating
the interferometer’s photon shot noise limit. In a completely balanced interfer-
ometer with perfect contrast, ∆ = 0, the average background intensity becomes
2RTE2

0(1−J0(2Γ)) when φ = 0. The small average intensity remaining in the dark
fringe is then entirely due to the modulation: for Γ� 1, it is1 2RTE2

0Γ2.

1 For small values of Γ the first two Bessel functions of the first kind are J0(Γ) ≈ 1 − Γ2/4
and J1(Γ) ≈ Γ/2.
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The intensity leaving the symmetric port becomes

Isym =E2
0

[
J2

0 (Γ)A2
0

(
cos2 φ

(
(R+ T ) + ∆(R− T )

)2
+ sin2 φ

(
(R− T ) + ∆(R+ T )

)2)
+ J2

1 (Γ)(R− T )2

− 4J0(Γ)J1(Γ)A0 sinφ(R− T )
(
(R− T ) + ∆(R+ T )

)
sinωmt

− 2J2
1 (Γ)(R− T )2 sin 2ωmt

+ higher order terms
]

(B.29)

To first order in Γ in the limit where the interferometer is symmetric, (R = T =
0.5 ,∆ = 0, φ = 0,) the intensity leaving the symmetric port is E2

0J
2
0 (Γ)A2

0 This
is just the input intensity degraded by the cavity loss and a small loss due to the
modulation. This intensity is first-order insensitive to the modulation frequency and
the gravitational wave induced phase shift φ. Figure B–3 shows this geometrically.

4. The Physical Basis of Some of the Noise Terms.

In this section we discuss the photon shot noise, the effect of laser frequency
noise, the fluctuations in the forward scattering of the residual gas, the thermal
noise, and the optical radiation pressure fluctuations that enforce the standard
quantum limit. Seismic noise is discussed separately in Appendix D.

a. Photon shot noise. Photon shot noise, which can be thought of as due to
the counting statistics of the photons, dominates the estimated noise budget at high
frequencies. The uncertainty in the optical phase and the uncertainty in the number
of photons in a specific state of the radiation field are related by the electromagnetic
uncertainty relation ∆φ∆n > 1 . In the coherent state of single-mode laser light,
the photons have a Poisson distribution: ∆n =

√
< n > The amplitude spectral

density of the photon “current” at frequency f is given by

dn

dt
(f) =

(
2
〈
δn

δt

〉)1/2

(B.30)

The resultant phase fluctuations, expressed as an optical phase amplitude den-
sity at the antisymmetric output of the interferometer, is given by

φ̃n(f) =
(

2hc
ληεP (1− Lopt)GR

)
(B.31)

Here η=detector quantum efficiency, ε=optical efficiency of the entire optical train,
P=laser optical power, Lopt=total optical loss ≥ 4Acτs/L, A=average loss per
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mirror, GR=broadband recycling power gain ≤ 1/Lopt (GR = 1 for no recycling),
λ=optical wavelength, h=Planck’s constant.

The interferometer’s shot noise limited sensitivity expressed as an equivalent
gravitational wave strain amplitude, is given from Equations B.17 and B.31 by

h̃(f) = φ̃n(f)
[
φ

h
(f)
]−1

(B.32)

For a Fabry-Perot interferometer without recycling this becomes

h̃(f) = f0

(
hλ

ηεP (1− Lopt)c

)1/2[
1 + (f/f0)2

]1/2
. (B.33)

where f0 = 1/4πτs, and τs is the energy light storage time for each arm’s cavity.
This result includes a factor of 2 for recovery of the phase information from the RF
modulation techniques used in a practical interferometer. The shot noise contri-
bution becomes independent of the storage time at gravitational wave frequencies
greater than f0, so there is no penalty in using large storage times.

For broadband recycling, under the optimum assumption that all the optical
loss in the system is due to the loss in the cavity mirrors, the shot noise limit is

h̃(f) = f
1/2
0

(
cA

πL

)1/2( hλ
ηεP (1− Lopt)c

)1/2[
1 + (f/f0)2

]1/2
. (B.34)

In a broadband recycled system the sensitivity is optimized at a frequency f by
choosing the storage time so that τs = 1/4πf , i.e. so that f = f0.

b. Frequency fluctuations of the laser. Fluctuations in the frequency
of the laser can contribute to the interferometer’s phase noise in two ways: (i) Fre-
quency fluctuations can couple to a difference in the storage times of the two Fabry-
Perot cavities to produce a gravitational strain noise h̃(f) = 2ν̃(f)∆τ/ντ , where
ν̃(f) = amplitude spectrum of frequency fluctuations, ν = laser frequency, ∆τ/τ =
fractional storage time unbalance of the two cavities. This noise can be reduced by
electronically differencing the cavity locking signals and the antisymmetric output,
since frequency noise is common to them. (ii) Frequency noise can introduce relative
phase fluctuations between the main beam in a cavity and scattered-light beams,
thereby enhancing scatter-light noise. Methods for controlling this are discussed in
Appendix F.

c. Noise from the residual gas. The residual gas can produce mechanical
noise in the interferometer by damping the suspensions (see below) and by producing
acoustic coupling to the outside world. This mechanical noise will be reduced to a
negligible level in the LIGO by operating at pressures less than 10−6 torr. More
serious are fluctuations in forward scattering of light by residual gas in the beam
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d. Thermal noise. The fluctuation-dissipation theorem of statistical me-
chanics [B–3] asserts that the damping mechanism in a physical system produces
thermally driven random fluctuations in the system’s modes of motion. The the-
orem is easy to understand in the case of the damping of a mechanical system by
residual gas. The damping mechanism is the coherent transfer of momentum from
the moving object to the residual gas particles (Doppler friction), while the fluctua-
tions are imparted to the object by the random impacts of the residual gas particles,
which are thermalized at temperature T.

The residual gas in the LIGO is specified to be low enough so that it does not
contribute to the dissipation of the LIGO’s mechanical elements (mirrors, masses,
beam splitters, ...). The principle sources of thermal noise are expected to be dissi-
pation in the flexure of the suspension support elements and the internal dissipation
of the normal modes of the cavity mirrors.

Thermal noise in a mechanical system can be expressed as

F 2(f) = 4kTα(f) dynes2/Hz. (B.36)

Here α(f) is the coherent damping coefficient (dynes sec/cm) of the mechanical
system when driven at a frequency f .

The spectral representation F 2(f) of the thermal noise is useful in estimating
the displacement noise in the mechanical elements of the interferometer at all fre-
quencies, providing α(f) is known. The frequency dependence of α(f) depends on
the damping mechanism. Generally the resonances in the mechanical elements are
chosen to be outside of the LIGO’s gravitational wave band: the suspensions are
designed to have resonances below that band, while the internal resonant modes
of the optical components have resonances above it. By modeling the mechanical
modes of an element as harmonic oscillators driven by the force spectral density,
one computes for the spectral density of the displacement noise in a mode

x2(f) =
4kTα(f)

m2
(
(ω2

0 − ω2)2 + (α(f)ω
m )

2)2 , (B.37)

x2(f >> f0) ≈ 4kTα(f)
m2ω4

→ 4kTω0

mQω4
if α(f) = α(f0), (B.38)

x2(f << f0) ≈ 4kTα(f)
m2ω4

0

→ 4kT
mQω3

if α(f) = α(f0), (B.39)

where Q = mω0/α(f0) = oscillator quality factor, m = the mode’s effective mass,
ω0 = 2πf0 = the mode’s resonance frequency.

In estimating the equivalent gravitational strain noise due to the thermal noise
from several elements, assumed uncorrelated, the noise power is summed

h2(f) =
∑m
n=1 x

2(f)
L2

(B.40)
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Several subtleties arise in estimating the thermal noise: (i) As indicated, the
damping can be frequency dependent so that a simple measurement of the Q of
an oscillator is not sufficient to predict the thermal noise off resonance. (ii) In an
oscillator under the influence of several restoring mechanisms, such as in a pendulum
where both gravity and the elasticity of the suspension fibers apply restoring forces,
the Q of the entire mechanical system can be much larger than the intrinsic Q of
the suspension fiber material. The Q of the pendulum is larger than the Q of the
suspension material by the ratio of the energy stored in the gravitational field to
that stored in the elastic deformation of the fiber. (iii) Estimates of the equivalent
gravitational wave strain due to thermal excitation of the normal modes of the test
masses and mirrors depend on the overlap integral of the optical mode shape with
the mechanical mode of the mass. The test masses and mirrors in the gravitational
wave interferometer will usually be cylinders. The modal frequencies and shapes for
cylinders with radii comparable to their height have been studied extensively [B–4].
The most perturbative modes are those that cause a net phase shift over a large part
of the optical wavefront and are at the lowest frequencies. The lower order flexural
modes tend to increase in frequency with cylinder height, while the longitudinal
mode frequencies decrease. Cylinders with ratio of height to radius between 1 to 2
give the best compromise. The modal frequencies are given by f = Λvs/a where
Λ is usually an eigenvalue between 1 and 5, vs is the shear speed of sound in the
material, and a is the radius.

e. Radiation pressure noise and the standard quantum limit. The
laser light, through the momentum it carries, imparts forces to the optical compo-
nents of the interferometer. Fluctuations in the laser intensity introduce random
forces on the cavity mirrors. The intensity fluctuations are symmetric between the
two arms of the interferometer so that the resulting noise, which affects the gravita-
tional wave measurement, cancels except for the mechanical and optical unbalance
of the two interferometer arms. The noise due to this source is not expected to be
a major factor in the initial LIGO interferometer but will have to be considered in
the advanced interferometers in which it may be necessary to amplitude stabilize
the laser light by feedback techniques in the gravitational wave band.

In addition to these symmetric radiation pressure fluctuations, there are pres-
sure fluctuations antisymmetric between the two arms. These are produced by a
superposition of the main beam’s electromagnetic field and quantum electrodynam-
ical vacuum fluctuations that enter the interferometer through the dark side of the
beam splitter [B–5]. These pressure fluctuations are one source of the “standard
quantum” limit for the interferometric gravitational detector and are a macroscopic
example of the “Heisenberg microscope.” Because the fluctuating radiation pres-
sure is proportional to the correlated product of the vacuum field and the laser
field, it varies as the square root of the laser power and fluctuates on time scales of
the cavity storage time, a characteristic time for the vacuum electric fluctuations
to change phase by π relative to the laser field.
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Following this model, the rms fluctuating differential force on the pair of mirrors
in one cavity is

∆F =
√
< N >

[
hν
L

]
(B.41)

where < N > is the average number of quanta stored in the cavity mode and L is
the cavity length. The spectral density of the fluctuating force is determined from

(∆F )2 =
∫ 1/2τ

0

F 2(f)df,

where

F 2(f) = 2τ(∆F )2 = 2τ < N >

(
hν
L

)2

,

τ ≈ 2L
cT
,

F 2(f) =
4 < N > (hν)2

cTL
, (B.42)

and we assume negligible losses in the cavity’s central mirror, A � T. Assuming
that the mirror masses, m, can be considered free, the force produces a differential
motion x(f) ≈ F (f)/mω2. The average number of quanta in the mode and the laser
power are related by

< N >=
2LPin

cThν
, (B.43)

Pin =
εoptPlaser

2
, (B.44)

where it is assumed that the beam splitter divides the input power evenly between
the two cavities. Finally, the equivalent gravitational strain noise induced in both
cavities is

h̃(f)pressure =
√

2x(f)
L

=
4(εoptPlaserhν)1/2

cTLmω2
(B.45)

The sensing noise (shot noise) in the detection of the interferometer fringe at low
frequencies is

h̃(f)sense =
T

8πL
( hλc
ηεoptPlaser

)1/2
. (B.46)

The total noise of the interferometer if only due to optical field fluctuations is the
incoherent sum

h2(f) = h2
pressure(f) + h2

sense(f). (B.47)
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Since the radiation pressure noise power varies directly as the laser power, while
the sensing noise varies inversely as the laser power, there is a minimum in the total
noise at a specific, optimum laser power given by

Popt =
T 2λmcω2

32πεoptη1/2

=
L2λmω4

2πεoptcη1/2
. (B.48)

The term on the right reexpresses the optimum input power in terms of the optimum
cavity input mirror transmission for a gravitational wave frequency at ω = 2πf .
This is given by Topt = 4Lω/c. One contribution to the standard quantum limit for
an interferometric detector at a gravitational wave frequency f is the net pressure
and sensing noise at the optimized power with photodetector efficiency η = 1. The
quantum limit is actually

√
2 larger than that net noise, because of a contribution

from the uncertainty principle associated with the center-of-mass motion of the
mirrors [B–5]:

h̃(f)QL =
√

4/π
(

h
m

)1/2 1
2πfL

(B.49)

This noise is shown in Section V, Figure V–3 for the initial LIGO interferometer
and Figure V–4 for an advanced detector. The quantum noise is not a factor in the
initial interferometers but it does set a fundamental limit to the technique and is
one of the reasons along with all other sources of random forces that argues for a
large arm length L.

There are methods, in principle, for circumventing the standard quantum limit
in interferometers but it is not at all clear whether these methods can be realized
in practice.
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