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I. INTRODUCTION

This is the second of two volumes of a proposal to construct a Laser Interfer-
ometer Gravitational-Wave Observatory (LIGO). An artist’s sketch of the facility
at one of the sites is presented on the facing page. Volume 1, LIGO Science and
Concepts, gives the scientific justification for the proposed LIGO, concepts for
gravitational-wave detection, a general discussion of the conceptual design, and an
overview of the LIGO project organization, budget, and schedule.

Volume 2, Phase-A Design and Construction Implementation, addresses
the requirements derived from Volume 1 and presents a conceptual design descrip-
tion, a construction implementation plan, and a cost estimate. The LIGO require-
ments, specifications, and goals are given in Section II, the influence of phased
construction on the design is discussed in Section III, and the detailed conceptual
design is presented in Section IV. Site considerations are discussed in Section V, a
project implementation plan is provided in Section VI, and project costs are pre-
sented in Section VII.

The present phase of the LIGO design process has sought to establish a sound
basis for estimating the cost of implementation. It was not possible to scale the cost
from an existing design because no similar facility has been built before. Therefore,
selected design features were investigated at a fairly detailed level. Design priorities
were derived primarily from a priori perceptions of cost and cost risk. The resulting
design description in Section IV shows differing levels of detail, providing for a
balanced cost analysis in Section VII.



II. DESIGN REQUIREMENTS, SPECIFICATIONS, AND GOALS

The LIGO Concept described in Volume 1, Section IV defines key features of
the proposed facilities. We outline below the most important design considerations
derived from this concept.

The LIGO will consist of two laser interferometer facilities located far apart
within the continental United States. Each facility will include a vacuum system,
laid out in the form of an “L”, that is made up of 4-km tubes for the laser beams that
define the interferometer arms and of chambers that house the interferometer com-
ponents. The tubes will be approximately 1.2 m in diameter and will accommodate
up to six primary-interferometer beams. The facilities will also include buildings to
protect the vacuum chambers, protective enclosures for the beam tubes, and pro-
visions for isolating sensitive interferometer components from vibration, acoustic
noise, dust, and other disturbances.

A. 4-km Arm Length

Specifications associated with the arm length are summarized in Table II-1.

TABLE II-1
LIGO ARM LENGTH SPECIFICATIONS
Parameter Value
Arm length (nominal) 4 km
Arm length match between sites 0.2 km
Arm length match at each site 2 cm

B. Several Interferometers at Each Site

An essential feature of the LIGO is the capability to operate concurrently sev-
eral interferometers at each site! with minimum interference between the interfer-
ometers at a site (Volume 1, Section IV.A.3). Instead of separate vacuum systems
for each interferometer, a more economical system has been designed that permits
access to the components of any one interferometer while preserving the vacuum
environment for the laser beams and components of the other interferometers.

This design is illustrated for the case of two interferometers in Figure II-1.
Interferometer 1 has its test masses and optical components at the corner and
extreme ends of the vacuum-system arms. Interferometer 2 shares most of this
vacuum system, except that its beam splitter and associated optics are contained

! The Phase-C configuration of the LIGO will have 6 interferometers at Site 1 and 3 interferom-
eters at Site 2. (See Appendix A for a discussion of a possible future expansion of the LIGO))
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Figure II-1 Schematic illustration of two interferometers sharing the same vacuum system with
minimum interference. One interferometer has its beam splitter and associated input and output
optics at the intersection of the two arms. The second interferometer shares the vacuum envelope
for the arms, but has an adjoining vacuum envelope for its beam splitter and associated optics,
situated along the bisector of the arms. Deflection mirrors steer light between the beam splitter
and the main cavities. The gate valves (“V”) shown in the plan view allow most parts of either
interferometer to be isolated for access while the other is operating. The remaining parts (deflection
mirrors and main cavity mirrors of the second interferometer) are serviced by lifting them from the
vacuum system arms (see elevation view) and closing horizontal gate valves.



in an adjoining vacuum envelope, offset along the diagonal of the “L”. The offset
is accomplished by deflection mirrors between Interferometer 2’s beam splitter and
the main cavities. The design allows for the removal or installation of parts of one
interferometer, without causing significant disruption to the operation of the other
interferometer. Up to six interferometers can be accommodated by extension of this
design.

C. Interferometers of Different Arm Lengths

Additional interferometers that do not extend the full length of the “L” can
be accommodated by adding vacuum chambers in the corner area and part way
down the arms of the “L”. We have chosen to provide for additional half-length
interferometers at one site (see Volume 1, Section IV, Figure IV-1).

D. Clear Aperture for Laser Beams

The LIGO concept calls for a vacuum enclosure with a clear aperture of 1 m to
accommodate up to six Fabry-Perot interferometers.? The clear aperture is defined
as the cross section of the right circular cylinder running the full length of the
vacuum system, and is reserved for laser beams and interferometer components.
Figure II-2 shows how the test masses and mirrors for six interferometers can be
arranged to fit within the 1 m aperture. Test masses up to 50 cm in diameter
can be accommodated in four of the six positions. The numbers in the figure
indicate the sequence of test masses; the sequence was chosen to prevent the test
masses and suspension wires of one interferometer from obscuring the laser beams
of another. Positions 1, 4, and 6 correspond to interferometers with arms 4-km long,
while positions 2, 3 and 5 are for arms 2-km in length. The clear aperture also
accommodates secondary interferometers for monitoring and controlling relative
motion of the suspension points of each primary-interferometer’s test masses, as
illustrated in Figure II-2 and discussed in Volume 1, Section V.A and Volume 1,
Appendix C.

As discussed in Volume 1, Appendix F, scattering of light off the tube walls may
be a source of noise in more advanced interferometers, if the walls are vibrating. We
will reduce the effects of scattered light by (1) choosing an appropriate finish for the
tube inner surface, (2) installing optical baffles in the tube at appropriate intervals,
(3) choosing low-vibration equipment, and (4) installing an enclosure around the
beam tubes to protect them from wind-induced and acoustic vibration.

E. Vacuum System Properties

Statistical fluctuations in the index of refraction of the residual gas can limit
interferometer sensitivity, as discussed in Volume 1, Section III.A.3. The effect
varies with gas species and is cumulative along the gas column in the optical path.
The LIGO pressure specifications are summarized in Table II-2.

2 This aperture permits flexibility in interferometer design by accommodating both delay-line or
mixed Fabry-Perot /delay-line interferometers, possibly operating at near-infrared wavelengths.
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Figure II-2 Arrangement of test masses with attached interferometer cavity mirrors.
Upper: Arrangement of individual test masses in the corner station that permits most
efficient use of the clear aperture. The corresponding end masses at the end or mid
stations are in the reverse order. Lower left: End-view of a suspended test mass. Lower
right: A view of the corner station masses as seen from one of the beam tubes, showing
the relation to the 1 meter clear aperture.

TABLE II-2
AVERAGE BEAM-TUBE PARTIAL PRESSURES!
INITIAL REQUIREMENTS AND GOALS

GAS INITIAL GOAL
SPECIES REQUIREMENT

(torr @ 300 K)

H, 1x10-¢ 1x10-°
H,0 1x10°7 1x10-19
N, 6 x 10-8 6 x 10-11
Cco 5x 108 5x 10-11
CO, 2% 10-8 2 x 10-11

1Maximum pressure in chambers = 1 x 10~ torr.

The initial pressure requirements are set so that residual gas will not limit the
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sensitivity of the initial LIGO interferometers. They are derived from the design of
the initial interferometers, which is described in Volume 1, Section V.A (see also
Volume 1, Figure III-2). The vacuum system design must ensure that these initial
requirements are met with some margin.® The goals in the table are similarly set
(from estimates of the sensitivity achievable with advanced interferometers); the.
vacuum system design must not preclude achieving these goals at some future time,
but the goals are not going to become cost drivers in the initial construction of the

LIGO.

The vacuum requirements are most demanding in the phase-sensitive paths of
the interferometer (from the beam splitter to the distant ends).* The requirements
are less stringent in the input and output optical paths. The residual gas pressure
requirement in the chambers that house the test masses and beam splitters is set
to keep the gas damping and acoustic coupling of ground motion at levels below
those imposed by the test-mass suspension systems. This is satisfied by operating
at pressures below 1076 torr.

F. Vibration and Acoustic Noise

LIGO interferometers have the best chance of achieving ultimate sensitivity in a
quiet environment. One environmental limitation is the natural seismic background.
Figure II-3 shows the vibration amplitude spectral density of typical ground motion
at several representative locations. The dashed line represents the adopted LIGO
design environment; the LIGO facilities will be designed to have vibrational motion
at the support interfaces for the interferometer vibration-isolation stacks that is
lower than this level.

Acoustic noise at the vacuum enclosure and lasers will be limited to a pressure
amplitude spectral density of 107* Pa/vHz and 45 dBA rms (about the level of a
quiet office).

G. Cleanliness and Dust Control

Some of the optical components of LIGO interferometers are sensitive to dust,
and are usually handled in clean room environments. Dust, volatile contami-
nants, and hydrocarbons can also collect on exposed vacuum-system surfaces during
internal-access operations, limiting vacuum-system performance and, perhaps more

3 The current vacuum-system design, described in Section IV, can meet these initial requirements
even without the bakeout that is planned as part of the installation.

4 Another consideration is the temporal stability of the gas column density. Although rapid
fluctuations in the column density have not been observed in accelerator vacuum systems nor in
the prototype interferometers, the LIGO will be many orders of magnitude more sensitive than
prior systems, and the short-term stability of the column density merits attention. The optical
phase change that results from a pulse of gas in the phase-sensitive part of an interferometer might
simulate a gravitational-wave burst. The half-length interferometer should enable discrimination
between pulses of gas and valid gravitational-wave signals (see Volume 1, Section VII).
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Figure IT-3 Vibration amplitude spectral density data for typical motion of the ground
at several locations: (A) MIT laboratory; (B) Caltech laboratory; (C and D) potential
LIGO sites; (E) Lajitas, Texas (seismically quietest known location in the United States),
with 3-10 mph wind conditions; (F) Lajitas, with no wind. The dashed line is the adopted
LIGO specification for vibration measured at the instrument mounting structures.

seriously, exposing the contained optics to sources of contamination during vacuum
operation.

The contamination problem is addressed by a hierarchical strategy for limiting
dust contamination, beginning with control of building material and pressurization
of buildings, and ending with dust filtration and local air curtains in the chambers
and critical work areas.



H. Site Requirements

The scientific goals of the LIGO constrain the selection of sites; site specifica-
tions are summarized in Table II-3.

TABLE II-3
SITE SPECIFICATIONS

Number of sites 2

Distance between sites

minimum 2500 km
maximum 4500 km
Arm length (nominal) 4 km

Angle between arms

nominal 90 deg

tolerance £ 15 deg
Slope of arms < 0.2 deg
Orientation, absolute No requirement
Orientation, relative Optimized for average of

coincidence projection alignment
and Virgo-optimized alignment!

1Refer to Volume 1, Section V.C for discussion.

The site specifications are satisfied most economically by locations that can
accommodate level interferometer arms with a minimum of earthwork. Sites should
be sufficiently far from urban development to ensure that they are seismically and
acoustically quiet, but near enough for convenient housing of resident and visiting
staff. Electrical power and road (or rail) access should be sufficiently close to allow
economical construction. Soils and drainage characteristics must be suitable for
LIGO construction, and environmental-impact concerns must be addressable.

I. Laser Power

Installed electrical power and cooling capacity limit the optical power available
from lasers. The total electrical power allocated to lasers will be 320 kW at a site
(see Volume 1, Section IV.B.2). This is sufficient for a total of 20 W of argon-ion
laser output, or 3 kW of output from Nd:YAG lasers.



III. PHASED IMPLEMENTATION

In this section, we describe how plans to expand the LIGO facilities beyond
the Phase-A period (covered by this proposal) influence the design of the initial
facilities. As described in Volume 1, Section IV, we anticipate three phases in the
life span of the facilities:

(1) Phase A, The Ezploration/Discovery Phase, will provide a one-detector?
facility for observation or development.

(2) Phase B, The Discovery/QObservation Phase, will provide a two-detector
facility and allow concurrent observation and development.

(3) Phase C, The Observatory Phase, will provide a three-detector facility and
allow concurrent observation, development, and special investigations. It
completes the LIGO evolution to its full capability as presently conceived.

The beam-tube length and diameter are fixed at the outset, and are determined
by the needs of the Phase-A configuration. The basis for choosing the beam-tube
length is discussed in Volume 1, Section IV. The beam-tube diameter is determined
from the requirement for a “clear aperture” for laser beams (see Section II.D) and
the need to provide space for baffles and a safety margin for alignment errors and

drift.

The principal impact of the phased-implementation approach on the Phase-A
design is that the initial vacuum system and enclosures must be configured so as
not to preclude increasing the number of interferometers that share the beam tube.

The chambers that house interferometer components are modular; adding in-
terferometers involves building and installing chambers of types already designed
for Phase A. The initial vacuum system is designed with removable sections and ap-
propriately placed valves to permit installation of hardware for future phases with
a minimum of disruption to operations (see Section IV.C). The vacuum-chamber
configurations for Phases B and C are described in detail in Appendix A.

The Phase-A buildings that house the vacuum chambers are designed from
the outset to accommodate the full Phase-C vacuum-system configuration. This
choice is partly motivated by the consideration that future expansion of an initially
smaller building would cost far more than any relatively modest savings realized up
front. However, our primary concern is to minimize the disruption that accompanies
expansion.

1 A detectoris nominally defined as three laser interferometers, two at Site 1 and one at Site 2.
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IV. DESIGN DESCRIPTION

A. Overview

The LIGO will incorporate L-shaped interferometric detectors with arms of
4-km length, located at two widely separated sites. This section of the proposal
describes the concepts for design of the LIGO detectors and supporting facilities.

The major elements of each LIGO installation are:
(1) The interferometers.

2) A vacuum system, which provides the operating environment for the in-
Y p P g
terferometers.

(3) Enclosures, which provide a controlled environment for the vacuum system
and for personnel.

(4) Additional supporting equipment and facilities.

The LIGO installation at Site 1 will consist of five stations connected by beam-
tube modules (each 2 km in length); it will be laid out as shown in Figure IV-A-
1. The corner station, two end stations (one each at the end of the right and
left arms), and two mid stations (one on each arm) will provide access to the
vacuum system and contain interferometer components, vacuum equipment, and
instruments. The sole function of the beam tubes will be to provide an evacuated
path for transmitting light between stations. Because these tubes will be passive,
access to their interior will not be required. Full-length interferometers will be
made up of components installed in the corner stations and end stations; half-length
interferometer components will be installed at corner stations and mid stations.
The Site 2 installation will be identical to that shown in Figure IV-A-1 for Site 1,
except that Site 2 will have no half-length interferometers and no mid stations.

The remainder of this section is organized as follows:
B. Initial Interferometer Design Description.

Vacuum System: Mechanical Design.

Vacuum System: Vacuum Design.

Enclosure Design.

m e Y Q

Instrumentation, Control, and Data System.
G. Electrical Power.

The reader may wish to review Volume 1, Section IV, which presents the ra-
tionale for the design features. Also, a quick survey of the remainder of this section
may be achieved by scanning the figures and captions; much of the design informa-
tion is contained in these illustrations.

10
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Figure IV-A-1  Layout of LIGO Site 1 facility showing the relationship of corner
station, end stations and mid stations connected by beam-tube modules 2-km long (a
reduced version of this figure appears in many other figures to help orient the reader).
The Site 2 facility has no mid stations.
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B. Initial Interferometer Design Description

The goal of the initial interferometer (see Volume 1, Section V.A) is to achieve
the highest sensitivity consistent with simple and reliable operation, using a 5-
W argon-ion laser and, to the maximum extent possible, using components and
techniques proven in the prototypes. The design description presented in this section
is in preliminary form; it represents the simplest implementation consistent with
minimizing risks in the extension from prototype scales to 4-km arm lengths. LIGO
interferometers will contain a number of modular subsystems, each as independent
as practicable. The interferometers will be sufficiently flexible to allow switching
between different modes of operation, from non-recycling mode in the first tests, to
various recycling modes. The principal features for each subsystem in the initial
interferometers are described and sample parameters are given.

1. Lasers and extra-vacuum optics

Each interferometer will have its own laser and associated prestabilization sys-
tem on optical benches that are separate from the main vacuum chambers. Some of
the parameters for this subsystem are listed in Table IV-B-1. These parameters are
based on the assumption that commercial lasers will be modified by us for improved
stability, using techniques developed during prototype research. The modification
isolates the laser mirrors from vibrations (resulting from the turbulent flow of cool-
ing water), and adds piezoelectric translators to control the laser frequency. The
reference cavity is a length standard defined by a stable spacer between mirrors
housed in a small vacuum chamber near the laser. A small fraction of the laser
output will be sampled for frequency stabilization of the main beam.

TABLE IV-B-1
PARAMETERS FOR LASER AND EXTRA-VACUUM OPTICS

Parameter Value Notes

Laser type Argon ion
Wavelength 514 nm
Power output 5W Single longitudinal mode
Reference cavity

Length ~1lm

Power ~01W

Finesse! ~ 1000

1See Section IV.B.2.a

13



2. Input/output optics

Many of the components within the corner-station vacuum chambers are for
conditioning and filtering the interferometer input and output beams. Figure IV-
B-1 illustrates how the light is processed.

Figure IV-B-1 (facing page) The path of laser beams (arrows) through the func-
tional units (boxes) in the initial interferometer. Many of the units are replicated several
times with only minor modifications (see text). The functional units are grouped into
subsystems denoted by dotted borders. The electrical connections are not shown in this
figure.

a. Mode-cleaner and filter cavities. There will be one or two! (the pair
arranged in series) mode-cleaner cavities (see Volume 1, Section III.B.3) at the
input, and one at the output. The cavity mirrors for the mode cleaners will be
separately suspended and controlled, with alignment controls similar to those for
the main cavity mirrors (see below). As indicated in Table IV-B-2, the input mode
cleaners must be capable of handling the full power available from the laser, and
the output mode cleaner will be exposed to much less power. The optical phase
modulation is simplified by choosing the length of the output mode cleaner so
that the modulation sidebands and the laser frequency are transmitted by different
resonance modes of the cavity. The finesse F' (F ~ 7 /(1 —+/R, R;), where R; is the
intensity reflectivity of mirror ¢) of the input and output mode cleaners is chosen
to obtain the best filtering action without significant transmission loss.

A circulator? before the output mode cleaner diverts the light reflected from
this mode cleaner into the subcarrier filter system, which contains the output filter
cavity. This system separates optical signals with different carrier and modulation
frequencies. These signals are used for interferometer control. The optical and me-
chanical specifications for the filter cavity are less demanding than those for a mode
cleaner. The filter cavity may be made from separately suspended components, or
from mirrors on the ends of a fixed spacer.

b. Functional units. Six distinct functional units are replicated throughout
the input and output conditioning-optics chains:

t. Mode-matching telescope. This unit consists of lenses that match a beam
to the TEMgo mode of a cavity or reduce the diameter of light beams exiting a
cavity and passing through small-aperture components such as Faraday isolators and
Pockels cells. Larger components may be used as they become available, especially
if their use can reduce the number of mode-matching telescopes.

1 The prefiltering mode cleaner may not be required for the initial interferometers. This will be
determined from results of prototype experiments.

2 A circulator (typically made from a polarizing beam splitter and a quarter-wave retardation
plate) diverts reflected light from a cavity away from the incident beam axis.

14
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TABLE IV-B-2
PARAMETERS FOR MODE-CLEANER AND FILTER CAVITIES

Parameter Value Notes

Prefiltering mode cleaner

Length 1m
Finesse =~ 1000
Power 5 W
Main input mode cleaner
Length 125 m
Finesse =~ 1000
Power 5W
Output mode cleaner
Length 125 m For 12-MHz modulation
Power 1w

Output filter cavity

Length ~1m

it. Mirror alignment unit. This unit is part of a control system that matches
the input light wavefront to a cavity by adjusting the relative orientation between
the cavity mirrors and the beam, and also centers the beam on the mirrors by
adjusting their relative positions. It uses a pickoff beam splitter to sample a small
fraction of the light reflected or transmitted by a mirror.

ui.  Cavity stabilization unit.  This typically consists of a circulator and a
photodetector to sense the phase difference between the input light reflected from
the cavity and the light stored in the cavity. The cavity stabilization unit may use
Pockels cells for high-frequency phase correction.

w. RF Phase modulator. Several of these devices generate the various RF
subcarriers and sidebands on the main beams that are used to obtain the interfer-
ometer output and control signals. The modulation scheme is shown in Figure V-2
of Volume 1.

v. Isolator. Several of these units (typically a Faraday optical rotator between
two polarizers) are used to suppress parasitic optical resonances between various
components in the optical chain. The key isolators, which decouple adjacent cavi-
ties, are shown in Figure IV-B-1. Additional isolators between other components
can be added as necessary.

vi. Amplitude modulator. This device is used in the input optics chain to
impress amplitude modulation on the light for diagnostic tests, or as part of a servo
to remove amplitude fluctuations. It is also employed in the output optics chain as

16



a variable attenuator during initial alignment, and as a shutter to prevent exposure
of the photodiode to excessive light power.

3. Main interferometer system

a. Mirrors and beam splitter. The design radius of curvature for the
interferometer-cavity mirrors is 3 km. The resulting spot sizes on the mirrors are
within a few percent of the minimum possible (confocal geometry) size. The beam
diameter is a minimum in the center of the cavity, where it is approximately 60%
of the spot size on the cavity mirrors.

The diameter of the mirrors defining the 4-km Fabry-Perot cavities is set so
that the diffraction of light does not limit the storage time or the number of recycles.
Mirrors of 14 cm diameter are adequate to keep diffraction losses smaller® than losses
caused by imperfections in the coatings; allowing for a degradation in mirror quality
near the edges, the design diameter for cavity mirrors is 20 cm (see Table IV-B-3
for the cavity parameters for full-length and half-length interferometers).

Storage time and loss parameters for the mirror coatings are discussed in Vol-
ume 1, Section V.A. The coating-uniformity and substrate-figure requirements listed
in Table IV-B-3 follow from the initial interferometer specifications for shot noise,
which determines the required storage time and number of recycles. The figure re-
quirement corresponds to A/30 (A = 633 nm) rms variation from perfectly spherical
mirror surfaces.

The diameter of the beam splitter (and associated beam-steering mirrors) will
be larger than the interferometer cavity mirrors by a factor of approximately 1.4, to
accommodate beams at 45-deg angles. Mechanical properties of the beam splitter
are less critical than those of the cavity mirrors.

b. Modulation and control side arms. A compensation/pickoff plate
between the beam splitter and each interferometer-cavity input mirror diverts a
small fraction of the light inside the interferometer into a side arm. Each side arm
is used for locking the adjacent main cavity and for applying phase modulation to
the light.? Each side arm terminates in an end mirror that sends the light back to
the compensation/pickoff plate for reinjection into the interferometer.

4. Seismic isblation stacks

A conceptual design for five-layer isolation stacks for the test masses and beam
splitter is shown in Figure IV-B-2, and the parameters are shown in Table IV-B—4.
Each pair of layers is separated by four compliant encapsulated-elastomer modules.

3 The diffraction loss for a near-confocal, 4-km cavity with 14-cm-diam mirrors is approximately
10~ per reflection. Relaxing the requirement to 10™% per reflection, as needed for initial interfer-
ometers, would reduce the required diameter by only ~ 1 c¢m.

4 These phase modulations are used in obtaining the gravitational-wave signal and in controlling
the separation between the beam splitter and each cavity input mirror, as shown in Figure V-2 of
Volume 1.
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TABLE IV-B-3
PARAMETERS FOR MAIN OPTICAL CAVITIES

Parameter Value Notes!

Mirror Coatings

Cavity storage time 2 msec

Scattering 4 absorption < 50 ppm

Surface microroughness <3 A rms for < 50 ppm scattering

Coating uniformity < 1.5% rms variation of transmission

coefficient over central 8 cm

Cavity length L 4.0 km (2.0 km)
Mirror curvature R 3.0 km (1.5 km)
Figure error 200 A rms over central 8 cm
Cavity stability parameter

g=1-% -0.33 (-0.33)
Spot radius at mirror

wy 2.6 cm (1.8 ¢cm)
Spot diameter at mirror

for 10~ loss 14.1 cm (10.0 cm)

!Parenthetical entries refer to half-length interferometers.

The “less critical” components will use three-layer stacks. The 300 kg capacity
for the isolation stacks accommodates the optical benches in the beam-splitter and
other chambers. See Volume 1, Appendix D, for an estimate of the achievable
performance of this type of seismic isolation.

TABLE IV-B+4
PARAMETERS FOR ISOLATION STACKS

Parameter Value Notes
Test-mass and beam-splitter isolation 7-Hz horizontal resonance
15-Hz vertical resonance

Passive stages 5

Capacity 300 kg
Isolation for less critical components

Passive stages 3

Capacity 300 kg
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Figure IV-B-2  Five-stage isolation stack for test masses. Isolation between steel
layers is provided by cylindrical modules consisting of elastomer elements encapsulated in
vacuum-tight canisters with compliant bellows. Upper: Plan view of stack, with octagonal
steel layers and cylindrical modules. Lower: Elevation view, showing offsets of modules
and steel layers. The elastomer elements are represented by the rectangles under the
horizontal plate in each canister. (The vertical rod, connected to this plate and to the
bellows, is not connected to the canister.) The double bellows arrangement on each
module provides compensation for forces when the gas pressure changes during pumping
or venting.

5. Test masses

The parameters for the initial interferometer test masses are listed in Table IV-
B-5. The optimum shape, as discussed in Volume 1, Appendix B, is that which
minimizes the internal thermal noise of the mass.5 The design uses fused-silica test
masses (the material used in prototype mirrors and masses), with the cavity mirrors

5 The table lists the lowest longitudinal mode resonance, at 16 kHz. A lower resonance, at
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coated directly onto the masses.

TABLE IV-B-5
PARAMETERS FOR TEST MASSES

Parameter Value Notes
Composition Monolithic, fused silica
Diameter 20 em
Length 14 cm
Mass 10 kg
Resonance 16 kHz Longitudinal mode

6. Control of test-mass and beam position

Each of the four test masses will be hung from identical wire suspensions,
connected to one of four identical isolation stacks. The suspension wires are attached
to a small metal bar (shown in Section II, Figure II-2) which is controlled by forces
between attached magnets and fixed coils. The test mass follows the angular and
translational motions of the suspension bar at low frequencies. Fine control of
longitudinal position and alignment over a wider bandwidth may be achieved by
electrostatic or magnetic forces applied between the test mass and a “reaction mass”
(visible in Figure IV-C-7) suspended behind it. The reaction mass is itself isolated
and suspended similarly to the test mass, to prevent seismic noise from entering
through the test-mass control system.

The “low-frequency” specifications for stability of test-mass orientation and
input beam direction and position in Table [V-B-6 refer to slow drifts associated
with thermal coefficients of the isolation stacks and position sensors. The upper
limit specification stated for angular fluctuations in the signal band (f ~ 1 kHz)
is determined by predicted first-order effects of beam motion on the interferometer
cavity’s optical length; higher-order effects may dominate, but the use of mode
cleaners is likely to result in smaller fluctuation than this upper limit specification.
The stability at intermediate frequencies (~ 10 Hz) is likely to be intermediate
between the values for thermal drift and the specification for motion in the signal
band. Local position sensors and feedback transducers, as well as optical levers to
determine the angular orientation of the mirrors, provide signals and control for
interferometer alignment. When the interferometer is operating, the positions of
the test masses and beam splitter are controlled to maintain the proper spacing.

12 kHz, has a smaller effect. Its contribution to the noise vanishes if the cavity beam center is
coincident with the center of this mechanical mode.
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TABLE IV-B-6
STABILITY OF CAVITY BEAMS AND TEST MASSES

Parameter Value Notes

Pendulum frequency 1 Hz Nominal; for 30-cm wire suspension

Local position sensors
Noise <1.10-"! m/VHz f< 100 Hz
Dynamic range 3 mm

Test-mass stability
Angular stability <4.1077 rad Peak motion at low frequency

Position stability < 0.7 mm Peak motion at low frequency

Beam stability
Angular fluctuations < 1012 rad/VHz f~1kHz

Position stability < 0.7 mm Peak motion at low frequency

Several other components need almost as much vibration isolation as the test
masses: the mode-cleaner mirrors, beam splitter, steering mirrors, and recycling
mirror. These will be suspended similarly to the test masses. Other optical compo-
nents will be suspended by pendulums isolated with less elaborate stacks, or none
at all. Local position sensors and associated force-feedback transducers are used to
damp the pendulum motions and for coarse alignment of suspended components.

Figure IV-B-3 shows a standardized mount and control mechanism for a typical
suspended optical component. The self-contained sensing and feedback system is
designed to provide adequate accuracy and sufficiently low noise for all but the
most critical components. By limiting the number of variations on this design to
two or three, automation of interferometer control will be simplified, and economies
of scale will be realized in the mechanical and electronic components.

7. Other elements of the design

a. Variable-reflectivity recycling mirror. The design will include the
option of operating without the recycling mirror, for diagnostic purposes. The
current concept for the recycling mirror is to build it as a composite of two low-
loss mirrors, with piezoelectric spacing adjusters. The reflectivity, and consequently
the recycling factor, can then be adjusted by varying the separation between the
mirrors.

b. Antiseismic suspension-point interferometer. A secondary optical
system to reduce seismic noise will be installed either during the initial interferom-
eter construction, or early in the operations phase. This suspension-point interfer-
ometer® has arms parallel to those of the primary interferometer; it measures the

6 See Volume 1, Appendix C for a description.
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Figure IV-B-3  Alignment, position, and damping control of a typical suspended
optical component. A transparent optical component is shown suspended in a holder
with five small permanent magnets attached to it. The position of each magnet is sensed
optically and controlled with a separate sensing/feedback head, resulting in control of
five degrees of freedom (two axes of pendulum motion, vertical position, pitch, and yaw),
Also shown is an optical lever consisting of a laser, a mirror at the left edge of the holder,
and a position-sensitive photodetector. The optical lever provides enhanced sensitivity
for monitoring pitch and yaw motion. Except for small modifications, the same design
for sensing and control can be used for almost all of the suspended components in the
interferometer.

motion of the bars at the top of the pendulum wires. Its output signal is used to
reduce the effect of seismic noise in the main interferometer, either by subtraction
from the recorded data stream, or by controlling the longitudinal position of the
suspension bars in a closed-loop servo. The overall interferometer design leaves the
inclusion of the suspension-point interferometer as an option that can be installed
with minimum disruption to operations.

c. Automatic alignment and centering of beams. Although simple
controls of the type used in the prototype interferometers should suffice to meet
the specifications listed in Table IV-B-6, the highest precision control of the ori-
entation of beams and test masses will be provided by alignment systems based
on the main interferometer beams. The complete system, consisting of automatic
alignment, centering sensors and controlling transducers, should keep the beams
precisely aligned at all times, and stationary relative to the test masses.
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d. Detailed design analysis and modeling. During the engineering design
of the interferometer, a detailed system-engineering analysis, including the effects
of scaling up from 40 m to 4 km, will be carried out. Among the key parameters
are: (1) the increased beam sizes that scale with v/L, (2) the increased precision
required in angular alignment, which scales as 1/v/L, and (3) the increased delay
times in some of the servo systems, which scale as L.
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C. Vacuum System: Mechanical Design

1. General characteristics of the vacuum system

The LIGO vacuum system is designed to meet several key requirements. The
beam tubes must:

e Provide a 1-m-diam clear aperture for the optical beams along the 4-km
length of each LIGO arm.

e Provide a vacuum good enough that interferometer sensitivity is not de-
graded by statistical fluctuations in the index of refraction of the residual
gas.

e Control the propagation of scattered light.

The chambers in the corner station, end stations, and mid stations must:

e Accommodate a wide variety of interferometer components and configura-
tions.

e Provide access for installation and servicing of interferometer components
with minimum disturbance to operating interferometers.

e Assure a clean, low-vibration, high-vacuum environment for interferometer
optical components.

The LIGO vacuum system will be constructed entirely of stainless steel. To
reduce pumping or bakeout requirements, stainless steel with low hydrogen content
has been developed (see Appendix D). We plan to use this type of steel for all
internal parts of the vacuum system.

High vacuum throughout the LIGO is achieved and maintained by ion pumps,
which are vibration-free and reliable. Condensible gases from interferometer com-
ponents are pumped by quiet liquid-nitrogen-cooled surfaces.

Gate valves at the ends of the beam-tube modules allow isolation of the major
elements of the LIGO vacuum system. Additional gate valves within the stations
facilitate installation and servicing of interferometer components and vacuum hard-
ware.

Rough pumping from atmospheric pressure to the range of 10~¢ torr is done by
mechanical-pump/turbomolecular-pump sets, located in the stations at both ends of
each beam-tube module. The same rough-pumping sets are used for the beam tubes
and the chambers in the stations. Less than 24 hours is required to rough-pump
a beam-tube module sufficiently to proceed with leak testing operations. Once
the beam tubes are pumped down, they will remain continuously under vacuum.
The relatively small chambers in the stations can be rough-pumped to 10~ torr
in a few hours; then the noisy pumps can be turned off, permitting unperturbed
interferometer operation.

Critical optical surfaces in opened chambers will be protected against particle
contamination by local high efficiency particulate air (HEPA) filter showers. Oper-
ation of these showers will be integrated with the chamber pumpdown and backfill
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procedures—they will be gradually turned off after the start of pumpdown, used to
backfill the chambers, and left on at all times when at atmospheric pressure.

Operation of the vacuum-system valves and pumps will be manually initiated
under the control of a central operator, with interlocks enabled by automatic system-
monitoring equipment.

TABLE IV-C-1
2-KM BEAM-TUBE MODULE DESIGN PARAMETERS

Number of modules per LIGO Installation 4

Clear aperture 1m
Length 2 km
Inside diameter 48 in.
Wall thickness 0.125 in.
Material Stainless steel, Type 304L
Stiffener spacing 24 in.
Optical baffle spacing 80 in.
Length of finished tube section 40 ft
Weight of finished tube section 3060 1b
Expansion-joint interval 40 ft
Tube-support interval 40 ft
Number of sections per module 160

Vacuum-pump spacing 804 ft
Number of pumps per module 7

Pump-tee length 4 ft

2. Beam tubes

a. Summary. The beam tubes at each site are made up of four identical 2-km-
long modules. Key design parameters of the modules are provided in Table IV-C-1,
and a segment of a beam-tube module is illustrated in Figure IV-C-1. Beam-tube
modules are designed to be supported on a continuous mat foundation and covered
with a concrete-arch enclosure after completion of field assembly, alignment, leak
testing, and bakeout (see Section IV.E.3 for a description of the cover construction
technique). Each module is composed of 40-ft-long sections of tubing, each with
an integral expansion joint. The sections are joined by vacuum-compatible welds.
Seven ion pumps are distributed along each module at equal intervals.
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<. Stiffening Rings

Figure IV-C-1 Segment of a beam-tube module showing stiffening rings and supports.
Each prefabricated 40-ft tube section has an integral expansion joint at one end. A
portion of the tube section is shown cut away to reveal one of the spiral baflles fitted
inside the tube. The semi-cylindrical beam-tube enclosure (shown cut away) is mounted
on the slab after the beam-tube module has been fully assembled and tested.

The 48-in. inside diameter tube sections are manufactured at an off-site com-
mercial mill; the 40-ft lengths are the longest that can be readily transported by
conventional highway trucks. The tube is spiral-rolled from 1/8-in.-thick stainless
steel, type 304L, with carbon-steel stiffening rings installed on the exterior at 24-
in. intervals. An expansion joint is welded into each tube section to accommodate
construction handling and thermal stresses. The ion pumps are attached to 4-ft-
long pump tees spaced one per 20 sections. A 6428-ft-long beam-tube module re-
quires 160 tube sections and seven pump tees. Together with beam-tube extensions
incorporated into the stations, the two beam-tube modules along an arm make up
a single 4-km-long vacuum envelope.

b. Design and fabrication of the beam-tube elements.

i. Tube section design and fabrication. Figure IV-C-2 shows the principal
design features of a 40-ft beam-tube section. The tube is produced in a continuous,
automated factory process. Coils of stainless steel sheet, 1/8 in. thick, 4 ft wide, and
weighing about 20,000 lbs, are loaded into a machine that simultaneously rolls the
sheet into a spiral-formed tube and welds the incoming sheet edge to the outgoing

27



1/8"wall, stainless steel tube
Stiffening ring

Expansion joint Continuous spiral weld

i |

fe— tz)g‘_" Support block

|

S $—40-0" g

Figure IV-C-2  Principal features of a beam-tube section. Left: Side view showing
single expansion joint, continuous spiral weld, stiffening rings and support block locations.
Right: View along cylinder axis. To reduce stress on the thinwall tubing, the tube is held
by support blocks mounted between two closely spaced stiffening rings.

tube product’. The tube is cut to length and stiffening rings? are welded into place.
Using a rolling process, each end of the tube section is then expanded for a distance
of about 2 in. along the tube axis to a standard circumference to remove diameter
variations. The end is faced off to leave a smooth, planar, end surface. The result is
a stiffened tube section suitable for subsequent fit-up and butt-welding operations.
An expansion joint? is butt-welded onto one end of the tube, completing the 40-ft
tube-section assembly.

1 The process is well established in the piping industry, with about 50 U.S. companies producing
carbon steel and stainless-steel pipe in diameters ranging from 4 to 150 in. and wall thicknesses
ranging from 0.052 to 0.62 in. A full-penetration tungsten-inert-gas (TIG) weld is applied by
machine from the inside of the tube. The weld joint is continuously monitored ultrasonically for
weld quality. The output tube product is cut to length by a plasma torch.

2 The stiffening rings, 1/4 in. wide by 2 in. high, are produced by rolling carbon-steel bar stock
into a helix, which is then cut into rings with a small overlap. The rings are expanded to fit loosely
over the finished tube product, positioned into place, and released to give a tight fit around the
tube. An extra stiffening ring is installed near each end of the tube section to accommodate the
tube supports.

3 The expansion joint, a conventional formed bellows with 0.020 in. wall thickness and five cycles
of 1.25-in. period, is fitted with 1-in.-wide rings of expanded, controlled-circumference tubing stock
welded to each end by the bellows manufacturer.
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Figure IV-C-3  Sketch showing beam-tube supporting hardware. Left: The joint
between tube sections. The two sections are butt-welded together in the field. Sections
are supported by simple flexible supports that allow thermal expansion without slipping.
Right: Cross-section of tube and supporting structure. The supports are made of roughly-
cut pieces of standard carbon-steel structural members. These are welded together in
a jig that defines the spatial relationship between the base-channel and support-block
faces; all other dimensions are noncritical. The base-channel piece has two 6-in. slots to
allow horizontal adjustment of the tube relative to the base. Vertical adjustment involves
inserting spacers between the tube supports and tube sections.

After the tube section is cleaned, temporary covers are clamped onto the ends
and the section is pumped down and tested with a residual gas analyzer for leaks
and cleanliness. After testing, the tube sections are fitted with shipping covers for
transport to one of the LIGO sites.

. Tube supports. The tube supports are simple and inexpensive steel struc-
tures shown in Figure IV-C-3. Two supports are used for each tube section. The
supports are designed to allow adjustment of the beam-tube alignment, with up to
6 in. of adjustment range in both transverse directions.* The supports also accom-
modate thermal stresses of the tube sections by flexing without stick-slip effects.

i2. Baffles. The beam tubes must control the propagation of scattered light,
as discussed in Section II.D. This requirement is partially met by random variations
in tube diameter, ellipticity, and alignment of the tube wall. These variations will

4 Initial alignment of the beam-tube foundations is expected to be within % 1 in. vertical, so
there is ample adjustment-range margin.
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arise naturally during the fabrication, field assembly, and alignment of the beam-
tube modules.® In addition, baffles with a “V” cross section are installed in the
beam tubes at 80-inch intervals. The baffles reflect scattered light that approaches
the tube walls with small grazing angles into rays that suffer strong attenuation by
multiple reflections from the tube walls.®

Figure IV-C—4 Spiral baffles. The baffles reflect stray light approaching the tube wall
with small grazing angles into steeper angles, leading to absorption by the tube through
multiple reflections. The serrated inner edge (exaggerated for clarity) randomizes the
phase of paraxial diffracted stray light (see Volume 1, Appendix F). The shape and
placement of the baffles is not critical (typical sheet metal tolerances are satisfactory).
The baffles are installed by inserting them into the tube in a compressed state and are
held in place by friction on the tube walls after being released.

The baffles, illustrated in Figure IV-C—4, are cut from a continuous helix” and
installed in the beam tube during field assembly.

5 Centimeter-scale variations are required; it is actually important to avoid building and aligning
the beam tubes as precisely as, e.g., an accelerator beam tube.

6 For a more detailed discussion, see Volume 1, Appendix F.

7 Fabrication of the baffles employs a machine-rolled spiral-forming process similar to that used
for the tube sections. Coils of 7-in.-wide stainless-steel (processed for low hydrogen content) sheet
stock are loaded into the roll-forming machine. As the stock is peeled off the coil, it is first folded
90 deg. along its center line; then the serrations are cut into the folded edge; finally, the folded,
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Figure IV-C-5 Attachment of ion pumps to the beam tubes. Upper: Section view
showing an ion pump connected to the beam tube. Lower: Plan view showing pump
attached to 4-ft-long tee. There are seven ion pumps installed on each 2-km-long beam-
tube module.

1. Pump stations. A vacuum pumping station is installed between each group
of 20 tube sections of a beam-tube module. It uses a 2500 L - s™! ion pump,
separately supported, which is installed during field assembly of the beam-tube
module. The installation?® is illustrated in Figure IV-C-5.

c. Field assembly of the beam-tube modules. The design and field

serrated stock is rolled to produce a continuous helical output of about 50-in. outside diameter. The
output product is cut into rings with about 1 ft of overlap to allow for separation of the overlapped
area during insertion into the beam tube. Crude sheet-metal processing techniques are adequate to
meet the tolerances on shape, fit, surface roughness, and edge definition.

8 The pump tee, is fabricated in a similar manner to the 40-ft tube sections. A short, flanged
nozzle of 18-in.-diam is added to one side to attach the ion pump. A 2.5-in.-diam flanged nozzle
is included for attachment of diagnostic instrumentation. The pump tee is installed into the beam
tube in the same manner as a tube section.
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assembly of the beam-tube modules is considerably simplified by not attempting
to control the accumulation of length errors in the assembled portion. The beam-
tube modules are simply fitted to the stations at each end with special-length tube
sections.

i. Alignment of the tube sections. The continuous mat foundations are con-
structed as early as possible to give maximum time for settling. The foundation
slabs describe a plane with errors of order 3 c¢m, obtained by using standard con-
struction survey techniques. The tube sections are locally aligned with a precision
of about 0.5 cm using reference monuments, located at 250 m intervals. A survey
of the monument positions is performed using a kinematic survey technique, which
is ideally suited to the needs of the LIGO. This technique relies upon radio signals
broadcast by satellites of the Global Positioning System (GPS). A portable GPS
receiver, placed on each monument in turn, is used to determine the relative (3-
dimensional) locations of the monuments with a precision of a few millimeters. The
vertical contour of the slab is traced with a precision of one centimeter by trans-
porting the receiver along the foundation slab between monuments.

With these survey data,? field alignment of the tube sections becomes straight-
forward. A laser leveling transit provides a beam aligned to the clear-aperture axis.
The tube section is supported on a movable jack at each end. The mating end is
positioned for welding to the tube already installed and the other end is aligned
to the laser beam, using the angular freedom of the built-in expansion joint. This
procedure will result in alignment of the tube sections within 1 cm.

1. Welding the tube sections together. Tube sections arrive at the site from the
manufacturing plant with shipping covers that protect the inside of the tube section
from contamination and prevent damage to the ends that are already prepared for
welding.

Portable enclosures!? are sealed around the new tube section to protect the

inside of the tube from wind-carried debris. The shipping covers are removed,
an expandable backing ring!! is inserted into the mating joint, and the new tube
section is fitted to the built-up tube. An automatic welding machine!? is then
installed and a TIG weld is made. After the weld is completed, the expandable

9 The receiver data are recorded on floppy disk. The field assembly crew will work from instruc-
tions generated from these data that specify tube-section alignment relative to the nearest reference
monuments.

10 The portable enclosures have flexible ends wrapped around the adjacent tube walls to obtain
an environmental seal.

11 The pneumatically-actuated expandable backing ring, grooved under the weld joint, is inserted
inside the tube to obtain accurate alignment of the joint and to contain the backside inert purge gas
for the weld.

12 The welding machine is guided by a flexible track installed around the tube for accurate tracing
of the joint contour. The expandable backing ring and track-guided automatic TIG welder are
commercially available.
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backing ring is withdrawn through the newly attached tube section. The baffles are
installed (see next subsection), and a protective cover with an alignment target is
attached to the free end of the tube. The portable enclosures are detached from the
tube and moved out of the way.

The reusable shipping covers are returned to the tube manufacturing plant for
use on new tube sections.

ui. Installing the baffles. Six baffles are inserted into each tube section, one
at a time, by spreading the overlapped ends (thus contracting the diameter of the
baffle) with a simple tool on the end of a boom. Once a baffle is located into
position, the tool is released and withdrawn, permitting the baffle to spring into
place. No additional attachment to the tube wall is required. Baffle spacing is not
critical (the tolerance on baffle position is +1 m).

1. Installing the supports. The tube supports are positioned on the foundation
slab beneath the pair of stiffening rings provided for this purpose (refer to Figure
IV-C-3), and fastened to the slab. Support blocks welded to the stiffening rings
are bolted to the support via spacers selected to match the tube height.!?

d. Design tradeoffs.

. Material. The possible material choices for the LIGO beam tube are stainless
steel, carbon steel, and aluminum. Stainless steel is strong and stiff, has good
welding characteristics, resists corrosion, and is traditionally used in high-vacuum
systems.

Carbon steel, although about 1/6 the cost of stainless steel per unit weight,
is generally not used in vacuum systems at pressures below 10~% torr. It is more
subject to corrosion than stainless steel, which may lead to excessive outgassing
rates. Compared to stainless steel, it has a much higher diffusion rate for hydro-
gen.!* The additional pumping speed required to cope with a higher permeation
rate would negate any cost advantage. We conclude that using carbon steel for the
LIGO beam tubes is too risky.

Aluminum is lightweight but less stiff than stainless steel, requiring either
thicker walls or more stiffening rings. At today’s prices, an aluminum beam-tube

13 The tube section is now supported, aligned, and secured to the slab foundation. Subsequent
vertical adjustments (if required by, for example, settlement of the foundation slab) are made by
changing the spacers. Horizontal (transverse to the tube axis) adjustment is accomplished by loos-
ening the fasteners that secure the tube support to the slab and sliding the tube support on the
slab.

14 Although room-temperature diffusion-rate data are not available, extrapolation of high-
temperature data to room temperature suggests that the diffusion rate of hydrogen in carbon steel
may be six orders of magnitude larger than for stainless steel. Our estimate for the permeation rate
of hydrogen, generated on the exterior surface due to corrosion from water vapor and permeating
through the bulk material to the high vacuum side, is that it might exceed 10712 torr - L - s—1-
cm™2,
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section would cost about 7% less than the proposed stainless-steel sections. On
the other hand, most fittings and flanges for high-vacuum systems are made from
stainless steel, and joining aluminum and stainless steel is technically difficult. The
additional cost of attaching ion pumps, instrumentation fittings, and valves would
offset some or all of the potential cost savings. Aluminum is free of dissolved hy-
drogen, so that no high-temperature bakeout is needed. The low-hydrogen-content
stainless steel proposed for the LIGO beam tubes also requires no high-temperature
bakeout. We conclude that there is no advantage to considering aluminum for the
beam tubes, and have chosen traditionally favored stainless steel.

i1t. Tube-wall thickness. Tube-wall thickness is chosen to balance the cost of
stainless steel with the cost of stiffening rings. Although the ASME Boiler and
Pressure Vessel Code!® excludes vacuum vessels from its scope, this standard is
commonly used as a guide for design of vacuum tubing and chambers, and was used
to determine the wall thickness of the beam tube. The code permits the option of
increasing equivalent wall stiffness by the use of external stiffening rings.

Without stiffening rings, the wall thickness of the beam tubes would need
to be nearly 1/2 in. By adding inexpensive, external carbon-steel stiffening rings,
the thickness of the relatively expensive stainless-steel walls is significantly reduced.
Optimization minimizes the sum of the cost of the bulk stainless-steel sheet material
and the cost of fabricating and installing the stiffening rings. This, in turn, depends
upon the price of steel. Table IV-C-2 displays the recent cost history of stainless
steel; the costs include about seven cents per pound for the special low-hydrogen-
content processing,.

TABLE IV-C-2
COST OF STAINLESS STEEL

Date Steel price, $/1b
4/87 0.90
7/88 1.30
11/88 1.54
3/89 1.87
5/89 1.49

At the time of this writing, tube cost optimization has a broad minimum for
wall thicknesses in the range of 1/8 to 3/16 in. An increase in the price of stainless
steel favors thinner walls. We have chosen the lower end of this range (0.125 in.) to
minimize sensitivity to prices of stainless steel and to achieve lower weight, which
will result in easier handling and installation. This choice will be reviewed during
the detailed design of the beam-tube modules.

15 Section VIII, Pressure Vessels; Division 1.
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us.  Alternate fabrication methods. We have been investigating corrugated
metal pipe (CMP) as an alternative to smooth-wall tubing with stiffening rings.
CMP is commercially available as a spiral-formed product for drainage culverts,
caissons, and other applications. In the LIGO beam-tube application, spiral-formed
stainless-steel corrugated pipe would eliminate stiffening rings, eliminate the need
for expansion joints in the tube, reduce wall thickness, and significantly increase
attenuation of scattered light.

The required tube wall thickness, using a corrugation profile of 1 in. peak to
peak by 5 in. period, is 0.067 in. The major risk involved with this approach
lies in the weld integrity. We have initiated an analytical and testing program to
characterize the nature of the stresses affecting weld integrity.

3. Vacuum chambers

The vacuum chambers in the corner station, end stations and mid stations
provide the operating environment for the interferometer components. To accom-
modate interferometer evolution (and the anticipated Phase-B and Phase-C expan-
sions of the vacuum system) with minimum disruption, we have adopted a modular
approach that provides flexibility in size and geometrical arrangement of the vac-
uum chambers.

a. Corner station.

i. Site 1 chamber layout. The vacuum system for Site 1 is arranged to accom-
modate two interferometers during the initial (Phase A) operation of the LIGO,
with provisions to add modular vacuum chambers for a total of six interferometers
at some future time (see Volume 1, Section IV, for a discussion of the anticipated
evolution of LIGO operational capabilities). The Phase-A vacuum-system chamber
layout for the corner station at Site 1 is shown schematically in Figure IV-C-6. An
array of vacuum chambers is connected to enlarged (6-ft-diam) extensions of the
beam tubes that provide space for pointing and alignment beams and will accom-
modate future expansion of the vacuum system. Gate valves are provided where
the beam tubes connect to the vacuum equipment in the corner station, to permit
isolation of the major elements of the LIGO vacuum system for servicing, modifica-
tion, or emergencies. The ability to isolate the beam tubes after initial pumpdown
allows them to remain under continuous vacuum.

The chamber array is made up of four basic types of chambers: two types
of test-mass chambers, the diagonal chambers, and the horizontal-axis modules.
The Type 1 and Type 2 test-mass chambers, which house the interferometer test
masses and cavity mirrors, are located on the beam-tube extensions. In the Type 1
test-mass chambers, the test-mass assemblies are lowered into position through a
horizontal gate valve. In the Type 2 test-mass chambers, which are used only at
the extreme ends of the beam tubes, the test-mass assemblies are installed in their
final operating locations, isolated from the beam tubes by vertical gate valves.
The diagonal chambers contain the interferometer beam splitters. One diagonal
chamber, located at the intersection of the beam tubes, is connected through large
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Figure IV-C-6 Layout of the corner-station vacuum chambers for Site 1, Phase A.
The beam tubes (entering top and right) can be isolated from the corner-station vacuum
chambers by gate valves. An array of modular vacuum chambers and associated gate
valves permit the two interferometers to be operated independently. The horizontal-
axis module (HAM) chambers, diagonal chamber, and Type 2 test-mass chambers at
the vertex (the intersection of the beam tubes) house the input/output optics, beam
splitter, and corner-station test masses for the first interferometer. The chambers are
interconnected to form a single vacuum envelope, which may be isolated from the rest
of the vacuum system by vertical gate valves between the Type 2 and Type 1 test-mass
chambers. Components of the second interferometer are housed in the remaining HAM
chambers, diagonal chamber, and Type 1 test-mass chambers. The beam splitter and
input/output optics for this interferometer are isolated by the gate valves between the
diagonal chamber and the Type 1 test-mass chambers. The Type 1 test-mass chambers
(illustrated in Figure IV-C-T7) include a lifting mechanism and horizontal isolation valve
that permit access without disturbing the vacuum in the rest of the system.

apertures to the adjacent Type 2 test-mass chambers. Beams for this interferometer
pass directly between the beam splitter and the test masses. The beams for the
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second interferometer pass through the other diagonal chamber to a Type 1 test-
mass chamber. The horizontal-azis modules (HAMs) contain input and output
optics for each interferometer. The HAMs are separated into groups, connected by
beam tubes for the mode-cleaning cavities.

When the appropriate pair of gate valves is closed, all of the components for
one of the interferometers are accessible for service or replacement except those
in the Type 1 test-mass chambers. A test-mass assembly in a Type 1 test-mass
chamber can be serviced by lifting it from the beam tube and closing the horizontal
gate valve in the chamber. Thus, any component in either interferometer can be
accessed without interfering with the vacuum environment of the other.

The set of HAMs and the diagonal chamber associated with an interferometer
function like a single vacuum vessel. Because the HAMs are interchangeable, this
part of the vacuum system can grow or shrink as necessary to accommodate the
evolutionary development of the interferometer optics chains.

We now describe the design concept and features of each of these chambers in
more detail.

(a) Test-mass chamber, Type 1. The Type 1 test-mass chamber assembly
is shown in Figure IV-C-7. The vacuum envelope includes an optics unit with
a 6-ft inside diameter which serves as an expanded extension of the beam tube.
The expanded diameter accommodates auxiliary optical beams for position and
alignment monitoring. The test-mass assembly can be lowered into the optics unit
from above through a horizontal aperture in the air-lock unit, which is welded to the
top of the optics unit. The 5-ft-diam air-lock aperture accommodates test masses
up to 50 cm in diameter (up to 1 ton in mass). The laser beams traveling between
the diagonal chamber and the test-mass chamber pass through a port (not shown)
in the side of the optics unit, opposite the service-access port.

The air-lock unit contains a horizontally driven air-lock cover and actuator.
The cover and actuator are simpler than in a standard gate valve, as they are
designed to seal against atmospheric pressure in one direction only. Above the
air-lock cover, a pair of support beams that carry the weight of the interferometer
apparatus penetrates the side walls of the air-lock unit, sealed by soft bellows. A
2500 L - s~! ion pump is mounted on the air-lock unit. Other features provided by
the air-lock unit include vacuum instrumentation ports, a roughing-pump port, and
electrical feedthroughs.

The chamber is covered by a removable dome.

The interferometer test mass, reaction mass, beam-deflection mirror, and other
interferometer components are suspended from a space-frame structure attached
to the top of the vibration-isolation stack, described in Section IV.B.1¢ The stack
is kinematically mounted on three locating blocks attached to the internal support

16 The elastomer between the layers of steel in the stack is encapsulated in canisters to protect
the vacuum environment from contamination.
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Figure IV-C—7 Representation of Type 1 test-mass chamber (facing page), with key
components indicated (above). Principal elements of the chamber are: (1) the optics unit
(lower portion) aligned with the beam tube and continuously under vacuum, (2) the air-
lock unit (welded to the top of the optics unit) containing a horizontally-driven air-lock
cover, and (3) the removable dome. The vibration-isolation stack and suspended interfer-
ometer components are supported by a set of beams resting on four air-suspension units
outside of the chamber. Four symmetrically-arranged, soft bellows (orange) seal the pen-
etrations through the chamber at the air-lock unit and isolate the interferometer compo-
nents from external vibration. The interferometer components are serviced by using the
lift mechanism (op) to raise the vibration-isolation stack and test-mass assembly above
the plane of the air-lock cover. Once the air lock is closed the dome can be removed for
access to the components leaving the optics unit under vacuum. The service-access port
(in the side of the optics unit) permits backup access to the system. The optical beams
pass to and from the diagonal chamber through a port (not shown) on the opposite side
of the service-access port.

beams. This ensures that the stack is positioned accurately when lowered into place.
The internal support beams penetrate the vacuum envelope, sealed by soft bellows,
and rest on the external support beams, which in turn rest on four air-suspension
units.!” The flexible bellows are symmetrically arranged to provide compensation
of atmospheric pressure, so that the support beams do not experience a change in

forces when the chamber is evacuated.

This method of supporting interferometer components affords considerable me-

17 The air-suspension units are mounted on support piers, which carry the weight of the interfer-
ometer components, vibration-isolation stack, and support beams. Separate structural supports are
provided for the vacuum envelope (not shown in Figures IV-C-7, IV-C-8, IV-C-9, or IV-C-10).
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chanical isolation from both the chamber wall (which unavoidably acts as a micro-
phone, sensitive to ambient acoustic noise), and the building floor and foundations
(which transmit seismic vibrations).

In operation, the optics unit of the test-mass chamber assembly is continu-
ously kept under high vacuum, permitting optical beams from other interferome-
ters to pass through freely. To service or replace an interferometer component, the
vibration-isolation stack and suspended interferometer components are raised by
the lift mechanism until the lowest component clears the plane of the air-lock cover.
The air lock is then sealed, and the volume enclosed by the dome and air-lock unit
is air-released. The dome is then removed, and work on any part of the installed
apparatus may proceed. When the work is completed, the dome is replaced and
the upper section of the test-mass chamber assembly is rough-pumped to a pressure
suitable for turning on the ion pump. After the outgassing load (mainly water va-
por) drops to a suitable level and the absence of contaminating outgassing products
is verified, the air lock is opened. The interferometer apparatus is then lowered into
the optics unit, and normal operation is resumed.
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(b) Test-mass chamber, Type 2. The Type 2 test-mass chamber is illustrated
in Figure IV-C-8. It shares many of the design features of the Type 1 test-mass
chamber, but is not as complex. The vacuum envelope is a vertical-axis cylinder, 8
ft in diameter and 15 ft in overall height. The upper portion contains a vibration-
isolation stack and internal support beams with soft bellows seals, identical in de-
sign to those in the Type 1 test-mass chamber. Similar external support beams
and air-suspension units are also provided. The lower section, which contains the
interferometer test mass and associated components, has four ports, each 5 ft in di-
ameter, for access to the installed components. Two of these ports, aligned along
the direction of the optical beam, are coupled through removable adapters to the
adjacent diagonal chamber and to a 4-ft-diam gate valve joined to the beam-tube
extension. The other two ports are provided with simple covers. A 2500 L -s~! ion
pump is installed on the lower section.

VIBRATION
ISOLATION
STACK

INTERNAL
SUPPORT BEAM

EXTERNAL
SUPPORT BEAM

Figure IV-C-8 Drawing of Type 2 test-mass chamber (facing page), with key com-
ponents indicated (above). This chamber is used in locations where there are no optical
beams from other interferometers. The test-mass assemblies, vibration-isolation stacks,
and support beams are nearly identical to those in the Type 1 chamber. The chamber is
isolated from the rest of the system by a vertical gate valve in the adjoining beam tube
(see Figure IV-C-6). Components are serviced in place through large access ports on all
four sides or by removal of the upper section. An ion pump (not shown, but similar to
that installed on the air-lock unit of the Type 1 test-mass chamber) is attached to the
lower part of the vacuum vessel.

Crane access to the interferometer test-mass assembly and vibration-isolation
stack is provided by removal of the upper section. The upper section can be replaced
by a taller section (such as the dome used for the Type 1 test-mass chamber) if a
larger vibration-isolation stack is necessary.
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(c) Diagonal chamber. The diagonal chamber is shown in Figure IV-C-9. The
vacuum envelope is a vertical-axis cylindrical chamber of approximately the same
size as the Type 1 test-mass chamber, with horizontal separation planes near the
midpoint and at the top. The vertical section between the separation planes in-
cludes four ports, each 5 ft in diameter, for connection to the adjacent chambers.
In addition to passing optical beams, these ports also provide access for minor ad-
justments and for installation of small interferometer components. The connections
between these ports and the adjacent vacuum-system components are made by 2-
ft-long flexible bellows couplers, which are removed when access is required.
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\ I D} lﬁ' = SUSPENDED
OPTICAL
LD COMPONENTS
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Figure IV-C-9 [Illustration (facing page) and labeled sketch (above) of a diagonal
chamber. The cut away section reveals the optical components suspended from a space-
frame structure attached to an optical table, that rests on the vibration-isolation stack.
The load from the vibration-isolation stack is transferred to the floor by support beams.

The support of interferometer optical components is simpler than in the test-mass cham-
bers, because the stack and support beams are below the level of the optical beam.

An optical table rests on the vibration-isolation stack whose design, including
internal and external supports, is identical to that in the test-mass chamber.

The diagonal chamber includes two ion pumps (not shown) that provide high-
vacuum pumping for the complete vacuum envelope (including the HAMs) con-
nected to it. Ports are provided for vacuum instrumentation, a roughing pump,
and electrical feedthroughs.
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(d) HAM chamber. The horizontal-axis module (HAM), shown in Figure IV-
C-10, is the simplest of the four basic vacuum chambers. The vacuum envelope is
a horizontal-axis cylinder, 7 ft in diameter and 6 ft wide, flange to flange, oriented
with the cylinder axis horizontal and perpendicular to the optical-beam axis. Re-
movable end caps allow convenient access to the interferometer components inside.
The chamber has two flanged ports, each 5 ft in diameter, on opposite sides along
the laser-beam axis. One of the ports includes an integral expansion joint, making
installation and sealing straightforward. The chamber contains a square vibration-
isolated optical table, 6 ft on a side. The design of the vibration-isolation stack
is scaled down from the design for the test-mass chambers, but employs the same
concept of alternating stainless-steel plates and encapsulated elastomer. A support-
beam arrangement with external air-suspension units and compensated sealing bel-
lows completes the assembly. The HAM chambers are pumped through the associ-
ated diagonal chamber, so that no other vacuum features except feedthroughs are
needed.
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Figure IV-C-10  Representation (facing page) and labeled diagram (above) of a
horizontal-axis module (HAM). One cap is removed showing suspended optical com-
ponents and the vibration-isolation stack. The principal features of the HAM chamber
design are easy access to the optical components, simplicity, and modularity—HAMs can
be joined together to allow for a large range of interferometer configurations.
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The complete family of four modular vacuum chambers (and their elevation
features) is illustrated in Figure IV-C-11.
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Figure IV-C—11 The family of four modular vacuum chambers, shown in elevation
section to illustrate the relative vertical placement of the chambers. The beam crossing
modules will be used in future expansions of the LIGO vacuum system (see Appendix A).

i1. Site 2 corner-station chamber layout. The vacuum system for Site 2 accom-
modates one interferometer during the initial (Phase A) operation of the LIGO,
with provisions to add modular vacuum chambers for a total of three interfer-
ometers. The Phase-A vacuum-chamber layout for the corner station at Site 2 is
shown schematically in Figure IV-C-12. The layout is nearly identical to that for
Site 1, but without the vacuum chambers for the second interferometer. Type 2
test-mass chambers, a diagonal chamber, and HAM chambers are provided at the
intersection of the beam-tube clear apertures in the same manner as at Site 1. The
enlarged-diameter beam tube extensions at Site 2 are of the same length as those at
Site 1, so that the design of pointing and alignment servos and optics are identical
for interferometers at both sites.
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Figure IV-C-12 Layout of corner-station vacuum chambers for Site 2, Phase A. The
configuration is identical to that at Site 1 (see Figure IV-C-6) without the Type 1 test-
mass chambers and adjoining diagonal and HAM chambers associated with the second
interferometer at Site 1.

i, Illustrative optical configurations. Figures IV-C-13 and IV-C-14 illustrate
the layout of optical components in the diagonal and HAM chambers for two in-
terferometer configurations. Figure IV-C~13 shows the layout for the broad-band-
recycling configuration that is planned for the initial LIGO interferometers, shown
schematically in Figure IV-B-1. Figure IV-C-14 shows the layout for a resonant
recycling interferometer which might be installed in the LIGO at some future time
(this configuration and its applications are discussed in Volume 1, Appendix C).
These figures demonstrate the flexibility and efficiency of the proposed modular
vacuum-system arrangement. Growth in complexity of the interferometers tends to
require additional linear space along the optical-beam directions between the laser
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and the beam splitter (input optics), or between the beam splitter and photodetector

(output optics); such additional space can be accommodated by installing additional
HAM chambers as needed.
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Figure IV-C-13 Layout of input and output optics for a broad-band recycling inter-
ferometer, illustrating the optical components located in the diagonal chamber and HAM
chambers. Most of the components shown are separately suspended and controlled as il-
lustrated in Figure IV-B-3. The spacing of the components is determined by the beam
diameter and the clearances needed for mounts and servo controls (not shown). Unmag-
nified view: The laser and reference cavity are on the optical table at the far left; the HAM
chambers adjacent to them contain components to stabilize and filter the laser beam.
The two HAM chambers at the bottom contain optics to filter and detect the main
interferometer output beam. The long tubes between HAM chambers hold input and
output mode-cleaner cavities. Magnified view: The light filtered and stabilized by the
conditioning optics chain at the left is incident on the recycling mirror in the diagonal
chamber. The light propagates to the beam splitter and is then transmitted or reflected
to the cavity input mirrors in the two test-mass chambers. The light returned from the
cavities is recombined at the beam splitter and directed toward the output optics chain
(downwards in the figure).
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Figure IV-C-14 Layout of optical components in a resonant recycling interferometer.
Unmagnified view: Most of the optical components in the input and output chains serve
similar functions as in the broad-band recycling interferometer (see Figure IV-C-13). An
important difference in this resonant-recycling system is that the interferometer’s beam
splitter is not at the intersection of the main-cavity optical beams. The input and output
optics chains are offset from the positions in the broad-band recycling interferometer.
The offset is made by shifting the locations of the mode-cleaner tubes and associated
outer HAM chambers, using appropriate adapters. Magnified view: The beam splitter
(lower left in the diagonal chamber) is at the intersection of the input and output light
beams (lines coming from the left and going downwards). The cavity coupling mirror is
at the intersection of the beams that couple to the main cavities (extending to the right
and upwards).

b. End stations, mid stations. The end stations and mid stations at both
sites (Figure IV-C-15) are relatively simple, containing only test-mass chambers
and associated vertical gate valves, pumps, and beam-tube isolation valves. The
end stations each house one Type 2 test-mass chamber. An end cap is isolated from
the test-mass chamber by an expansion joint and anchored to the building founda-
tion, thereby minimizing perturbations of the test-mass chamber from atmospheric
pressure fluctuations.
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Figure IV-C-15 Phase-A vacuum-system layout in (a) the end stations and (b) the
mid stations. Site 1 includes two end stations and two mid stations; Site 2 has two end
stations and no mid stations. Each mid station houses a Type 1 test-mass chamber (see
Figure IV-C-7) and each end station has a Type 2 test-mass chamber (see Figure IV-
C-8). Vertical gate valves are placed in the beam tubes near their entry to the station
enclosures. Inside the station a short beam-tube extension connects to a larger-diameter
filler tube, to be replaced by additional test-mass chambers as part of the upgrades to
Phases B and C.

The layout for the mid stations at Site 1 is essentially identical to that of
the end stations except that (1) the beam tube extends from both ends of the mid
station and (2) a Type 1 test-mass chamber is used to permit access to the test-mass
assembly without interfering with the operation of the full-length interferometer.

At Site 2, where no mid station is planned, a gate valve, a roughing-pump
set and an ion pump are incorporated at the midpoint of each arm. These simple
features permit use of the same 2-km beam-tube module design at both sites.
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D. Vacuum System: Vacuum Design

1. Vacuum design requirements

The LIGO vacuum-system design requirements are discussed in Section II-E.
Table IV-D-1 repeats the pressure data from that section, shows the conversion to
column density, and specifies the maximum leak rate.

TABLE IV-D-1
LIGO VACUUM SYSTEM REQUIREMENTS AND GOALS

INITIAL GOAL
REQUIREMENT

Allowable column density!
(molecules - cm~?2)

GAS SPECIES

H. 1.3 x 1016 1.4 x 1013
H,O 1.3 x 1018 1.4 x 1012
N, 7.5 x 1014 7.9 x 1011
CO 5.8 x 1014 6.1 x 10!
CO, 2.7 x 104 2.9 x 1011

Equivalent partial pressure
(torr @ 300 K)

H, 1x10-6 1x10-°
H;0 1x10-7 1x10-10
N 6 x 108 6 x 10-11
Cco 5x 10-8 5 x 10-11
CO, 2x10-8 2 x 10~

Maximum pressure in chambers

(torr @ 300 K)
1 x 10-6 ‘

Maximum leak rate
(atm - cm3 . s~ of He)

Each beam-tube module —10
or chamber 1x10

Entire LIGO 1x10-°

!Column density is defined as the number of molecules contained in the optical
path per unit cross-sectional area expressed in molecules - cm—2, For convenience,
the table also gives the specification in terms of the equivalent averaged partial
pressure for the 4-km beam tubes.

The vacuum requirements are most demanding in the phase-sensitive paths of
the interferometer: the beam tubes, the diagonal chamber, the test-mass chambers,
and the interconnecting vacuum tubes. The allowable residual gas pressures given
in Table IV-D-1 are set to constrain statistical fluctuations in the refractive index
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of the residual gas column between the test masses. The less stringent requirement
on chamber pressure is set so that residual gas does not degrade the mechanical
performance of the test-mass suspensions.

2. Vacuum-system pumping configuration

High vacuum throughout the LIGO is achieved and maintained using ion
pumps. All LIGO vacuum pumps and valves are contained in the stations, except for
those ion pumps distributed along the beam tubes. Turbomolecular pumps, backed
by mechanical pumps, are used for all rough-pumping operations. Quiet liquid-
nitrogen-cooled surfaces assist in pumping the high condensible gas-load transients
in the stations.

a. Corner-station configurations. The vacuum-pump configuration for
the corner station at Site 1 is illustrated schematically in Figure IV-D-1; Site 2
is similarly arranged. The roughing-pump sets are located where the beam-tube
modules enter the station enclosure. A 24-in.-diam roughing manifold threads its
way through the corner station to each Type 1 test-mass chamber and each diagonal
chamber. These chambers have ion pumps that are turned on after a few hours
of rough-pumping. Coaxial liquid-nitrogen-cooled pumps adjacent to the beam
tubes trap the condensible gas load of a newly pumped down test-mass chamber or
diagonal chamber complex.

Figure IV-D-1 (facing page) Pumping configuration for the Phase-A corner-station
vacuum system at Site 1. The pumping system and associated manifold and valves
are overlaid on an image of Figure IV-C-6. A 24-in.-diam rough-pumping manifold runs
adjacent to the arms, terminating at two roughing-pump sets. The same roughing pumps
evacuate the main beam tubes and the chambers. Each chamber (except the HAM
chambers) is connected to the manifold through a valve. After initial rough pumping
the chambers are isolated from the roughing manifold by the valves and the vacuum is
maintained by vibration-free ion pumps attached to all chambers but the HAMs. The
HAM chambers are pumped through the adjoining diagonal chamber. A pair of coaxial
liquid-nitrogen-cooled pumps (one on each arm, top and right) provides high pumping
speed for water vapor. The Site 2 pumping configuration is similar.
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b. Mid stations and end stations. The vacuum-pumping configurations
for the end stations and mid stations are shown in Figure IV-D-2. The configuration
and operating strategy follow those employed in the corner station. Rough-pumping
sets are mounted on the ends of the beam-tube modules, and ion pumps are installed
on each test-mass chamber. Liquid-nitrogen pumps trap the transient condensible
gas loads within the stations.

Figure IV-D-2 (facing page) Pumping configuration for Phase A vacuum systems
in the (a) end stations (both sites) and (b) mid stations (Site 1 only) overlaid on an image
of Figure IV-C~15. The pumping strategy is similar to that employed in the corner
station (see Figure IV-D-1). Each station has a 24-in. pumping manifold that connects
the chambers to roughing-pump sets located near the adjacent beam tubes. Each chamber
includes an ion pump for steady-state pumping, and coaxial liquid-nitrogen-cooled pumps
trap the condensible gases within the stations.

c. Beam tubes. Each beam-tube module has seven 2500 L - s~! ion pumps
(with getters) distributed at equal intervals along its length, as shown schematically
in Figure IV-D-3. The ion pumps are installed directly on the beam tube without
isolation valves. The pressure will vary along the tube axis, changing from a min-
imum at the pump locations to a maximum midway between. The pump size and
distribution interval have been chosen to tolerate the failure of a pump or the de-
velopment of a small leak; in such circumstances, the beam-tube module pumping
will gradually degrade rather than catastrophically fail.
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Figure IV-D-3 Distribution of seven ion pumps along a beam-tube module.

d. Roughing-pump sets. Each roughing-pump set consists of a 100 L -
s~! mechanical pump;-a 500 L - s™! Roots pump (“blower”), and a 2200 L - s~!
turbomolecular pump, which effectively prevents backstreaming of hydrocarbons
into the vacuum system. The turbomolecular pump is mounted through a short
plenum and valve directly on top of the beam tube. Pumping speed at the ends
of the beam tubes, in molecular flow, is about 1000 L - s~!. Pumping speed in
molecular flow at the chambers, through the long roughing manifolds, is estimated
to be 400 L-s~1. The roughing-pump sets are provided with valves to accommodate
leak detectors for the beam tubes.
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e. Chamber pumping. As described in Section IV.C.3, each Type 1 test-
mass chamber has a 2500 L - s~! ion pump installed on the air-lock unit, above the
air-lock cover. With currently estimated gas loads, the ion pump can be turned on,
and the roughing pumps shut down, after 4 hours of rough-pumping, resulting in a
pressure of less than 107° torr. After the pressure is low enough, the air lock may
be opened.

Each diagonal chamber has two 2500 L - s™! ion pumps, and the two Type 2
test-mass chambers connected to the diagonal chamber at the vertex of the beam
tubes have one 2500 L - s™! ion pump each. The operating strategy is similar to

that of the Type 1 test-mass chamber. The diagonal-chamber pumps also evacuate
the HAM chambers.

f. Condensible-gas pumping. Each liquid-nitrogen pump! in the corner
station consists of a dewar, nominally 8 ft in diameter and 12 ft long, with a hold-
time of about 3 months. The pumping surface is a section 12-ft long and 48 in. in
diameter, aligned with the beam tube. The dewar can be isolated between two
48-in.-diam gate valves for regeneration. A length of 48-in.-diam tube connects the
dewar vacuum vessel to the 6-ft-diam extension of the beam tube within the corner
station. For gases such as water vapor that condense efficiently at liquid-nitrogen
temperature, only 4% of the incident flux propagates into the beam tube. Smaller
(4-ft-long) liquid-nitrogen pumps are used in end stations and mid stations.

3. Beam tube vacuum design concept

The beam-tube modules will be built from 304L stainless steel,? processed for
low hydrogen content. Stainless-steel sheet will be obtained from the steel mill with
a No. 1 hot-rolled finish, the least expensive finish available, and the most desirable
for scattered light attenuation. The tube section will be spiral welded in 40-ft-long
sections and individually leak tested to 1/10 the LIGO specification (see Table IV—
D-1).

The vacuum surfaces of each section will be cleaned at the manufacturing
plant before shipment to the site. The cleaning method has yet to be established;
however, steam cleaning with a mild detergent solution produced the lowest level
of contaminants among the methods tried by us, and resulted in an acceptable
outgassing rate (see Appendix D). It is also a low cost method, suitable for high
volume cleaning.

Beam tube parameters relevant to vacuum properties are summarized in Table
IV-D-2.

1 The liquid-nitrogen pumps, together with the local ion pumps, provide a water vapor pumping
speed of about 26,000 L-s~1 at the Type 1 test-mass chambers. The speed at the diagonal chamber
connected to the Type 1 test-mass chambers is about 14,000 L - s’l, and the speed at the diagonal
chamber at the beam tube intersection is about 32,000 L - s™1,

2 TheL grade of 304 is selected to avoid carbon precipitation in the welds, which could eventually
lead to leaks.
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TABLE IV-D-2

BEAM-TUBE MODULE PARAMETERS

Beam-tube module diameter 48 in.
Beam-tube module length 2 km
Beam-tube module volume 2.3x10°L
Beam-tube surface area exposed to vacuum 7.7 x 107 cm?

1 x 10-12(to/t)3 torr-L-s~!.cm

1.4 x 10~7(to/t)

Outgassing rate for hydrogen (to = 1 hr)

Outgassing rate for water vapor (to =1 hr) torr-L-s™!.cm

Outgassing rate for water vapor (after mild bake) 1x10-1 torr-L.s~1.cm~2
Roughing-pump set, maximum speed in viscous flow 500 L.s™!

Roughing-pump set, speed in molecular flow 1000 L.s!

Ion pump speed, nominal 2500 L.s™!

Number of ion pumps per beam-tube module 7

Distance between ion pumps 250 m

4 %10~ torr
9 x 10~8 torr

1x 10~  torr

Partial pressure, hydrogen (t = 1000 hr)
(unbaked, t = 1 yr)
(baked)

Partial pressure, water

Partial pressure, water

a. Gas load. Operating pressure in a vacuum vessel is determined by the ratio
of gas load to pumping speed. The LIGO beam tubes have no internal components
other than the stainless-steel baffles, and the gas load consists solely of material
evaporating from or diffusing out of the tube walls and baflle surfaces. The initial
gas load from unbaked, stainless-steel chamber walls is almost all water vapor. The
conventional procedure to obtain high vacuum is to perform a mild bakeout (100-
150 °C) of the system. This almost completely eliminates water vapor, so that the
dominant residual gas is hydrogen, which slowly diffuses out of the bulk metal.

The initial hydrogen content of standard commercial stainless steel is in the
range of 1 to 4 ppm by weight. The corresponding outgassing rates are 1.5 x 10710
to 6 x 10710 torr-L-s™! -cm™? after 1 h under vacuum. These rates will decrease as
the square root of time under vacuum [I[V-D-1]. Reducing the hydrogen outgassing
rate to an acceptable level would require bakeout-temperatures in excess of 500 °C.
Such high temperatures, even over short segments of the tube, generate considerable
mechanical stresses on the tube welds and supports, and would present a major
risk. The alternative of increasing pump speed would introduce unacceptable costs.

The low-hydrogen steel we tested has a measured outgassing rate as low as
3x 1071 torr- L -s™! - cm™2. Four chamber samples were fabricated from this
steel and subjected to long-term outgassing tests. Details of the experimental setup
and measurements are described in Appendix D. As shown in Figure IV-D-4, the
samples show considerable scatter; however a rate of 1 x 10712 torr- L -s~! . cm ™2
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after 1 h under vacuum is a reasonable value to use for design purposes. For the
LIGO beam tubes, with the pumps provided, this results in a hydrogen partial
pressure of 4 x 1071% torr after 1000 h under vacuum. This pressure is below the
goal level of Table IV-D-1, and will continue to decrease with time.

/Standard Stainless Steel

@] )\%
1013k Chambers
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Figure IV-D—4 Hydrogen outgassing rate as a function of time under vacuum for
four test vacuum chambers manufactured from low-hydrogen steel (obtained from J&L
Specialty Products Corp.). These chambers were subjected to different cleaning proce-
dures: (1) uncleaned, (2) hot water/detergent washed, (3) steam cleaned with detergent,
and (4) cold water/detergent washed. The predicted outgassing rate for standard stain-
less steel is shown for comparison.

Hydrogen outgassing from welds must also be considered; any filler material
will be degassed prior to welding, and an inert gas environment for the welding
operations should exclude hydrogen from hot surfaces. Because the zone affected
by welding constitutes less than 1% of the surface area of the finished tube, these
precautions to control the outgassing of welds should be adequate.

Water outgassing from a stainless-steel vacuum vessel has a nominal rate of
1.4 x 1077 torr - L - s~lcm™? after 1 h under vacuum [IV-D-2], and decreases with
time under vacuum. All four test chambers have outgassing rates lower than this,
by a factor ranging from 2 to 5. The calculated partial pressure of water vapor in
the LIGO beam tubes, corresponding to the model in [IV-D-2], meets the initial
requirement in Table IV-D-1 after 8000 h under vacuum. As discussed in the
next section, a mild bakeout to reduce water vapor outgassing is planned during
this period. Reaching the partial-pressure goal of 107!? torr requires reducing the
water-vapor outgassing rate to 107!* torr - L - sTlem™2, a level that is routinely
obtained by mild baking.
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b. Implementation. After field assembly of a beam-tube module is com-
pleted, it will be pumped down; this will take less than 24 h, using the roughing-
pump sets in the stations. After pump down, the module will be leak tested. A
residual gas analyzer will be used in preliminary tests to establish the total air leak.
A helium probe will be used to locate leaks.® Leaks in the beam-tube module will
be found and repaired until the leak rate drops below 3 x 107! torr- L -s~?! of air
(1071° atm - cm™3 - 57! of He) which is sufficient to ensure that weld quality is ad-
equate for long term operation.

After leaks have been located and repaired, the partial pressure for air will be
leak-rate limited and will be less than 2 x 1014 torr. Partial pressures for nitrogen,
hydrogen and water vapor will be confirmed against the calculated values. Bakeout
of the tube to reduce water vapor outgassing will then proceed.

The installation of conventional, permanently-installed bakeout heaters and in-
sulation along the entire LIGO beam tubes at both sites cannot be accommodated in
our present budget. In addition, if heaters and insulation were to be installed, they
would interfere with subsequent diagnostic leak checking. It is planned, instead,
to use manually-installed portable insulated heater jackets which are moved from
one tube section to the next. During the final pump down of a beam-tube module,
heater jackets are installed on 200 ft of beam tube at a time, and heated to 200 °C
for 24 h. During this time the equivalent of ~ 7 x 107 hours of room-temperature
water-vapor outgassing will be achieved. (This should result in an outgassing rate
of 2x 1071 torr-L-s~!-cm™2.) During this sequential bakeout operation, a purge
flow of gaseous nitrogen is introduced at one end to prevent the water vapor released
by baking from re-contaminating the previously baked surfaces. A flow speed of
40 cm/s at a pressure of 1 torr reduces the diffusion probability for water vapor
to below 1071% at 1 meter upstream from the point of release. The purge gas*

thus “sweeps” the water vapor released by baking toward the pumped (and still
unbaked) end of the tube.

The procedure outlined above is untried so far, and will be demonstrated on
a model before implementing it in the LIGO. The unbaked LIGO beam-tubes will
meet the needs of the initial interferometers; nevertheless, we consider it advisable
to perform the sectional bakeout described above before startup of interferometer
operations in order to expel undetected contaminants from the beam tubes and
to advance our readiness for higher sensitivity interferometers. After the initial
bakeout, we will operate the interferometers until it appears likely that sensitivity
will be limited by gas pressure. At that stage, additional bakeouts will be performed,
if necessary.

3 A helium pulse will take about 5 minutes to travel one km and reach 50% of its final value.
4 A special requirement on the purge gas is that its partial pressure of water be of the order of
1019 torr or less.
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4. Chamber vacuum design concept’

In this section, we present an analysis of the pumpdown transient behavior for
selected chamber configurations.

The vacuum chambers will be made from the same low-hydrogen stainless steel
used for the beam tubes,® and with the specified ion pumps should pump down
to ~ 1 x 107? torr of hydrogen. The chambers and internal supporting members
(vibration-isolation stacks, optical tables) can be vacuum baked as necessary.® 7
These steps will result in a gas load from the chamber that is small compared
to the water outgassing from installed interferometer components. Good vacuum
engineering of the interferometers will be necessary to achieve acceptable vacuum
levels in reasonable times.

A pump-down-transient analysis of the chamber configurations has been done
by numerically tracing gas fluxes. Table IV-D-3 summarizes the highlights of this
analysis for two representative chamber configurations: (1) a vertex chamber assem-
bly,® and (2) a mid-station Type 1 test-mass chamber. The table gives a “snapshot”
of the water-vapor partial pressures at various points in the LIGO vacuum system at
two times (4 h and 24 h) after the start of a pump down from atmospheric pressure.

The table shows that the pump-down transients for these cases present no
problem for the initial interferometers (expressed as a fraction of the column density
requirement; see Table IV-D-1). With the assumptions for the interferometer gas
loads given in Table IV-D-3, it would take 18 days to achieve the column density
goal desired for interferometers of advanced design. Should this delay become a
problem in the future it will be solved by choosing interferometer components more
compatible with high vacuum practice than that assumed in the model and possibly
installing larger pumps at the chambers.
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5 Standard stainless steel, baked at high temperature by the chamber manufacturer in order to
reduce the hydrogen outgassing rate to < 1 x 1012 torr - L - s~1. cm—2 after 1 h under vacuum,
is a practical alternative for the chambers. \

6 The vacuum seals in the chambers, gate valves, and airlocks will be elastomer “O” rings (which
limit the maximum bakeout temperature to about 200 °C).

7 This processing results, for subsequent pump downs from atmospheric pressure, in a water
vapor outgassing rate of 1 x 10~10 torr - L - s™!- cm™2 after 10 h under vacuum [IV-D-3].

8 A vertex chamber assembly consists of the diagonal chamber, HAM chambers, and two Type 2
test-mass chambers located at the intersection of the arms.
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TABLE IV-D-3
CHAMBER PUMPDOWN TRANSIENTS!

t=4 h t=24 h
CASE A: CORNER STATION VERTEX CHAMBER ASSEMBLY
Gas load, interferometer components? 5.3 x 10~2 8.8x 10-3 torr - L .s™!
Pressure at beam splitter (ion pump OFF)3 1.4 x 10-* torr
Pressure at beam splitter (ion pump ON) 5.5 x 10~ 9.2x 10°7 torr
Pressure at beam splitter (gate valve OPEN) 2.8 x 10-7 torr
Pressure at LN, trap inlet 2.0 x 10-8 torr
Pressure at beam tube inlet 9.0 x 10~10 torr
Pressure at 250 m 5.7 x 10~10 torr
Pressure at 2 km 2.6 x 10~1! torr
Column density 2.5 x 1013 molecules - cm~?
Fraction of allowable column density:
initial requirement 0.019
goal 18

CASE B: MID STATION TEST MASS CHAMBER

Gas load, interferometer components? 4.3 x 10-3 7.1x%x 104 torr - L .5~}
Pressure at test mass (ion pump OFF)3 1.2x 10°% torr

Pressure at test mass (ion pump ON) 1.9x 108 3.6 x 10-7 torr

Pressure at test mass (air lock OPEN) 9.6 x 10~° torr

Pressure at LN, trap inlet 2.3 x10-° torr

Pressure at beam tube inlet 9.5 x 10~10 torr

Pressure at 250 m 6.1 x 10-10 torr

Pressure at 2 km 2.8 x 10-11 torr

Column density 3.9 x 1012 molecules - cm~?

Fraction of allowable column density:
initial requirement 0.003

goal 2.8

ITable entries assume that the roughing-pump set runs for 4 h, at which time the local jon pump(s) is turned on and the
roughing valve is closed. Twenty hours later, the gate valves to the beam tubes are opened. The analyses assume that the
water vapor gas load varies as 1/t, and that the chamber being pumped down is the only source of gas flux in the system.
The final results are expressed as column density along the full 4-km system length.

2The gas load from the empty vacuum vessels is typically at least an order of magnitude smaller than the gas load from
the interferometer components.

3 All pressure values are calculated for a temperature of 300 K.
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Figure IV-E-1 (facing page) Illustration of corner-station enclosure.
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E. Enclosure Design

The enclosures for the stations and the beam tubes provide the operating envi-
ronment for the LIGO vacuum system, equipment, and operations personnel. The
buildings must provide a quiet, low-vibration environment for the interferometer
components, and must provide a clean environment to minimize contamination of
the vacuum system and optical components. The buildings will be sealed and pres-
surized to preclude entry of dust, pollen, vermin, and other sources of contamina-
tion. The most critical systems regarding acoustic and vibrational noise are those
that run continuously, such as air-conditioning and laser-cooling equipment. The
required ambient conditions in the vicinity of interferometer components are sum-

marized in Table IV-E-1.

Figure IV-E-2 (facing page) Cut-away drawing of Site 1 corner-station enclosure.
The vacuum chamber configuration is the mature Phase-C LIGO facility. The beam
tubes and their enclosures emerge from the corner station at the far left and far right of

the figure.
TABLE IV-E-1
AMBIENT CONDITIONS
FOR INTERFEROMETER COMPONENTS
Temperature 23 £1.5°C
Humidity (relative) 40 + 5%

Vibration

< 2x 10-° m/"/Hz (f < 10 Hz)
< 2x10~7 (Hz/f)? m/vHz (10 Hz < f < 10 kHz)*

Sound pressure

< 10~* Pa/vHz (10 Hz < f < 10 kHz)*
< 45 dB (A-weighted) rms

Air quality (dust)
Vacuum chamber area
Exposed optics
Clean room (work surface)

Positive pressure

Fed. Std. 209 Class 50,000 (goal)
Fed. Std. 209 Class 200

Fed. Std. 209 Class 100

> 10 Pa (0.1 mbar)

Electromagnetic interference
Electric fields
Magnetic fields

<1mV/mvHz (f < 10 kHz)*
<2 nT/VHz (f < 10 kHz)*
<100 nT rms (f = n x 60 Hz)

*Narrow-band exceptions permitted
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1. Corner-station enclosure

The corner-station enclosure is illustrated in Figure IV-E-1. Its Phase-A floor
plan at Site 1 is shown in Figure IV-E-3, and that for Site 2 in Figure IV-E-4.
The floor plans are similar except that the area provided for vacuum chambers
at Site 2 is somewhat smaller because it will accommodate fewer interferometers.
The layout of the planned Phase-C expansion of the vacuum system is shown in

Appendix A, and a representation of the Site-1, Phase-C, corner station is shown
in Figure IV-E-2.
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Figure IV-E-3  Floor plan for the Site 1 corner station in Phase A. Upgrades for
Phases B and C will introduce more chambers and tubes into the “vacuum equipment
area,” but will not enlarge the building (see Appendix A, Figure A-4 for comparison).
Section (A-A) is shown in Figure IV-E-5.

The buildings house vacuum equipment, lasers, and optical and electronic com-
ponents necessary to operate the interferometers. A utility room contains the
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Figure IV-E-4  Floor plan for the Site 2 corner station in Phase A. This layout
is identical to that at Site 1, except that the “Vacuum Equipment Area” and “Utility

Room” occupy less area, commensurate with the smaller number of interferometers at
this site.

building air-handling equipment and the pumps and heat exchangers for the lo-
cal laser-cooling loops. A small, remotely-located chiller plant (~100 m distant)
provides chilled water for building air conditioning and laser cooling. To reduce
transmission of vibration from machinery or personnel to the interferometers, sepa-
rate foundations are provided for the vacuum-equipment and laser area, the utlhty
room, and the office and shop area.

a. Vacuum-chamber and laser area. The vacuum-chamber and laser area
enclosure (labeled “Vacuum Equipment Area” in Figures IV-E-3 and IV-E-4) is
a single-story structure of varying height with an area of about 60,000 ft2 at Site
1, and about 48,000 ft? at Site 2. The building is of steel-frame construction with
both interior and exterior walls to provide added resistance to dust penetration
from the outside. The roof and exterior walls are metal double-skinned, insulated-
foam-core panels with double-lock standing seam. The inside walls are covered by
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preformed panels with baked-enamel finish for sealing and cleanliness control. A
dropped ceiling, finished with mylar-covered acoustic tiles, is provided to control
acoustic reflections and to trap dust which may leak through the roof. The building
interior, including the volume between the inner and outer walls, is pressurized
slightly over atmospheric pressure as a further measure of dust protection. The
buildings have no windows, eliminating a potential source of dust contamination,
improving thermal control, and providing security.

Interior ceiling height is 50 ft in the region over the test mass chambers and
30 ft elsewhere. A section view of this area is shown in Figure IV-E-5. Eight
underhung bridge cranes provide complete coverage of the vacuum equipment. The
crane system consists of two 10-ton cranes over the test-mass chambers, and six 5-
ton cranes for the remaining area. The cranes come with swing-out sections and
interlocking crossovers to transfer equipment between the crane runways. All cranes
include speed controls and soft-start devices.

SECTION A-A

Figure IV-E-5 Section view of the Site 1 corner station, showing variation in interior
ceiling height to accommodate Type 1 test-mass chambers and overhead cranes. The
view corresponds to the Section (A-A) indicated in Figure IV-E-3.

The building is constructed on a reinforced-concrete mat foundation, finished
with rubber flooring.

b. Utility room. Heating, ventilation, and air conditioning (HVAC), in-
cluding humidity and dust control, are provided by air-handling equipment in the
utility room and by a small chiller plant, which is remotely located. Cooling for
the lasers is provided individually by closed-loop deionized-water cooling systems
with heat exchangers coupled to the chilled-water lines; the laser-cooling systems
are also located in the utility room.

c. Office and shop areas. The office and shop area layout, common to both
sites, is shown in Figure IV-E-6. This area contains office space for resident and
visiting personnel, rooms for monitoring and control equipment for the facility and
interferometers, and space for testing and service operations. The general layout
is planned to reduce the introduction of contaminants by having personnel and
equipment move from outside to inside through increasingly clean regions.
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Figure IV-E-6 Floor plan of the office and shop area, common to the corner stations
at both sites. The vacuum-equipment area is adjacent to the top wall in the figure.

The control room is the operational center of the facility. Manned 24 h/day, all
systems-status and performance parameters are monitored and controlled from this
location. Laser power and cooling will be activated from the control room. Vacuum-
system pumps and valves will be controlled by the operator, although activation of
the large roughing pumps and valves in the remote end stations and mid stations will
require positive intervention by another person, local to the equipment. The tape
drives for the data logging system are housed in the control room. Interferometer
status and alarms will be monitored from here, and the operator will be able to
perform some interferometer adjustments. Access to the laser area and vacuum
chambers, including the end stations and mid stations, will be controlled by the
operator. Physical security of the facility will be monitored by a system of low-
light-level television cameras displayed in the control room.

The experimental equipment area will contain electronic equipment for cen-
tralized control of—and data acquisition from—the interferometers. This is the
primary area for personnel who are working on the development or maintenance
of interferometers when they are not installing or removing components in the
vacuum chambers. All adjustments of the interferometers can be performed from
this area. The experimental equipment area also contains the electronic equipment
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for acquiring and processing data from auxiliary-physical-parameter measurements
and facility-housekeeping measurements.

A testing area is provided for setup and checkout of interferometer components
before installing them into the vacuum system. This room will contain a small laser,
vacuum chambers for performance testing, and a vacuum bakeout chamber.

Equipment that arrives at the LIGO installation will be processed in a man-
ner which ensures the integrity of the clean environments. Packages that arrive
at the loading dock will be cleaned externally before being moved into the receiv-
ing/shipping area. There, they are unpacked from the outer shipping container and
moved to the inspection area, where the inner packaging is removed and the contents
are verified. Equipment destined for the vacuum equipment area is moved through
the cleaning area for removal of dust or contamination. The doors connecting these
areas will be opened one at a time, to prevent outside dust or particulate contam-
ination attached to packaging from reaching the clean vacuum-chamber and laser
areas. The processing areas and connecting doorways are large enough to handle
optics assemblies, vibration-isolation stack components, and vacuum chambers.

A clean room is provided for working on interferometer optics and lasers. It is
designed with vertical laminar air flow to provide a Class 1000 room environment;
laminar-flow clean benches provide Class 100 working surfaces. Entry is through an
air-shower anteroom, large enough to accommodate both the long argon-ion lasers
and large test-mass assemblies.

Mechanical and electronics shops are provided for maintenance and repair
of interferometer and facility equipment. The electronics shop contains elec-
tronic repair instruments and calibration equipment for vacuum instrumentation,
auxiliary-physical-parameter instrumentation, computers, and interferometer elec-
tronics. The mechanical shop contains small machining and welding equipment for
maintenance or modification of interferometer components and vacuum chambers.

Figure IV-E-7 (facing page) Artist’s illustration of a right-arm mid-station enclo-
sure. The beam-tube enclosure is shown entering the mid-station enclosure on the left
and exiting on the right. The roof line is higher over the vacuum-equipment area and
loading zones to allow clearance for test-mass chambers and overhead cranes. The enclo-
sure for the left-arm mid station is a mirror image of the figure. The enclosure designs
for the end stations are similar to the mid stations.

2. Mid stations and end stations

The enclosures for mid stations and end stations are all of identical design (see
Figure IV-E-T), differing only in vacuum equipment layout. The floor plans for
the right-arm end stations, and the mid stations at Site 1, are shown in Figure
IV-E-8 and Figure IV-E-9 respectively. The design concept follows that of the
corner station. The vacuum-equipment area is of double wall construction with
covered floors, dropped acoustic tile ceiling, and an overhead bridge crane. The
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To Corner Station

area contains test-mass chambers, roughing pumps, liquid-nitrogen pumps, and
valves. It is sized for the planned Phase-C expansion of the vacuum equipment,
which involves adding Type 1 test-mass chambers to each building (see Appendix
A).
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Figure IV-E-8 Floor plan of the right-arm end stations, common to both sites. The
left-arm end stations have similar (mirror-imaged) floor plans.

The adjacent service area serves a function similar to the office and shop areas of
the corner station. An attached utility room (with separate foundation for vibration
control) contains HVAC equipment. A small chiller is remotely located.

Access to the service area and the vacuum-chamber area is controlled and
monitored by the facility operator in the corner station.

3. Tube enclosure

The tube enclosure protects the LIGO beam-tube walls from vibration induced
by wind. It also provides a degree of protection against vandalism or stray bullets
from hunters. An underground tunnel has been ruled out for cost reasons.

A concrete-arch cover design was chosen which, when integrated with the con-
tinuous mat foundation,! provides a rigid, stable structure enclosing the beam tubes.
An elevation section view of the covered tube is shown in Figure IV-E-10. The

1 The tube cover is built in place in 80-ft sections after field assembly and testing of the beam
tubes is completed. An inflated air bag will be used as a form for the arch structure. A section of
half-round corrugated-steel pipe is placed over the beam tube to support the air bag. The inflated

66



To End Station

N
7

@l ¢

b 4 b d o X /l I IJ
Clean Cleaning
Room Area Experiment
Equipment
Utility Room xz:;k Area
. Receiving/ Inspection ,
Shipping Area Work
Area ™ Station
” Loading Dock

Figure IV-E-9 Floor plan of the right-arm mid station at Site 1. The left-arm mid
station has a similar (mirror-imaged) floor plan. There are no mid stations at Site 2.

cover size is chosen to provide adequate room for access to repair leaks, adjust
the alignment of the beam tubes, or conduct beam-tube bakeouts. The cover also
protects electrical power distribution and communications lines.

U

Figure IV-E-10 Elevation section view of the covered beam tube.

air bag is restrained from above by flexible steel straps attached to the foundation slab. Preformed
reinforcing bars are laid into place over the air bag form and wired together. High strength, low-
slump “shotcrete” is then sprayed in place. In 2 to 4 hrs, the concrete gains sufficient strength to
support itself. The air bag is deflated and moved with the half-round steel pipe to the next section.
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F. Instrumentation, Control, and Data System

An initial concept for the instrumentation, control and data system for the
LIGO is presented, based in part on the experience gained with prototype interfer-
ometers. The concept will be further refined during the course of the engineering
design of the facilities and the interferometers.

The concept schematized in Figure IV-F-1 is a distributed system with cen-
tralized data archiving. The system consists of small computers and work stations
interconnected by a standard communication link, enabling users at different loca-
tions on the site to monitor the state of the facilities and the interferometers. The
system is readily implemented with current computer and instrumentation technol-
ogy. The functions of the system are broadly classified into facility monitoring and
control, interferometer monitoring and control (including environmental monitor-
ing), data archiving, and on-line analysis.

1. Facility monitoring and control

One part of the distributed system will be dedicated to plant monitoring and
control. The system acquires and displays the physical variables of the facilities
(such as temperatures, power flow, and laser cooling) and state variables (such as
building occupancy and fire monitors). It also provides control functions for safe
operation of the facilities, such as interlocks on laser power.

Another dedicated system will monitor and control the vacuum system. This
system will monitor data such as residual gas pressures, the spectra of residual
gas analyzers, ion-pump currents, and the states of valves, mechanical pumps, and
liquid nitrogen traps. It will also control the sequencing of changes of state of the
vacuum system.

The data from the plant-monitoring and vacuum-data systems will be delivered
to the archive and be accessible for trend and correlation studies in the scientific
data analysis. The facilities will be controlled from the central station.

2. Interferometer monitoring and control

The facility instrumentation and data system will be connected by standard
interfaces to computers that monitor and control the interferometers. The antici-
pated data rate is approximately 50 kbytes/s/interferometer. The large-bandwidth
signals will have a direct data-bus connection to the facility-archiving system. The
diagnostic instruments used in interferometer testing and development (such as dy-
namic signal analyzers, RF spectrum analyzers, and digital oscilloscopes) are con-
trolled by the standard ethernet and IEEE-488 bus network.

Dedicated processors, tightly linked to the interferometers, will be used to
control the suspension, automated alignment, and fringe-acquisition systems of the
interferometers. The data rates associated with these functions are too high to be
included (unprocessed) in the general facility control and monitoring system.
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Diagram of the instrumentation, control, and data system for a LIGO site. A
distributed architecture is used for all facility monitoring and control functions serviced by a standard
(Ethernet) network. The interferometers are locally controlled by dedicated processors (not shown).
The high bandwidth output data from the interferometers are transmitted to the facility archiving
system by a dedicated (VME) data bus. The archiving system combines the interferometer output
with facility and auxiliary monitoring signals. Display workstations throughout the facility can
access data from anywhere in the system.

The interferometers develop a large number of signals involved with the control

69

of lasers, beam positioning, mass positioning, and damping. These signals are



needed during the interferometer development and some of them will be archived
for subsequent use in the scientific data analysis.

A dedicated computer will monitor, process, and format for archiving the sig-
nals derived from auxiliary sensors (see Volume 1, Section VII).

3. Data archiving

A representative list of the signals developed by the monitoring systems and
the interferometers is shown in Table IV-F-1. The total data rate is too high for
economical storage with current technology, and we propose initially to completely
archive only the most important data. As data storage technology advances we
may record more fully a larger number of the available signals. The minimum
storage requirements and the data-management plans are dominated by the data
flow from the interferometers. The gravitational-wave output signal will be archived
continuously; this sets the scale for the archiving load. A single interferometer will
generate 5 X 10° bytes/day, which is manageable using high-density storage (such
as 8-mm-tape video cassettes, which would be filled at the rate of two per day).
The facilities will provide both archival high-density storage and disk storage for
on-line analysis.

The data will be archived with time tags accurate to 1 us to enable gravita-
tional-waveform analysis and to maintain phase information for long integrations
in a periodic-source search. The GPS satellite system will be used to maintain the
required time accuracy.

4. On-line data analysis

We plan to carry out some on-line data analysis using work stations connected
to the ethernet and with access to the disk archive. The work stations have the
capability to search! for burst sources as described in Volume 1, Section VII. At
Site 1 they would check the amplitude ratio between half- and full-length interfer-
ometer signals.

During interferometer development, the work stations will perform diagnostic
data analyses, such as the cross-correlation of the interferometer output signals with
ancillary interferometer signals and the auxiliary monitoring system.

The full-scale analysis of the archived data from both sites will take place on
the university campuses. If required, supercomputer facilities available in national
centers will be used.

1 One method is to use a dedicated work station for burst-template filtering and threshold
detection. The machine would be directly coupled to the interferometer with access to the high-data-
rate gravitational-wave output. When a threshold is exceeded, a signal is sent to other processors
on the ethernet to request data that have been stored in short-term ring buffers. In this way signals
that embrace the time of the threshold crossing and are relevant to the data analysis will be archived,
without placing huge demands on data storage capacity.
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TABLE TV-F-1
REPRESENTATIVE LIST OF SIGNALS!

BAND- DATA
SIGNAL DESCRIPTION NUMBER  WIDTH RATE
(kHz) (kbytes/s)
Interferometer Signals
Interferometer output Gravitational-wave signal 1 10 40
Symmetric port Intensity monitor 1 10 (40)
Main cavity lock 2 10 (80)
Beam splitter lock 1 10 (40)
Recycling mirror lock 1 10 (40)
Main frequency lock 1 10 (40)
Trim frequency lock 1 10 (40)
Side arm lock 2 10 (80)
Alignment Signals
Main cavity angle 2 angles/mirror 8 1 (32)
Beam position 2 axes/mirror 8 1 (32)
Recycling mirror 2 angles, 2 positions 4 1 (16)
Mode cleaner 2 angles, 2 positions 4 1 (16)
Suspension Signals
Main cavity mirror 5 degrees of freedom 20 0.1 (8)
Deflection mirror 5 degrees of freedom 10 0.1 4)
Beam splitter 5 degrees of freedom 5 0.1 (2)
Recycling mirror 5 degrees of freedom 5 0.1 (2)
Mode cleaner 5 degrees of freedom 10 0.1 (4)
Auxiliary Monitor Signals
Low freq. seismic 1/building 3 0.03 0.4
High freq. seismic 3/test-mass chamber 15 0.3 18
Acoustic pressure 1/test-mass chamber 5 2 (40)
Line power 1/building 3 0.1 1.2
Low freq. mag. field 3 axis magnetometer/building 9 0.03 11
High freq. mag. field 3 loops/test-mass chamber 15 0.01 0.6
RF interference 1/building 3 0.1 1.2
Cosmic ray showers 1/building 3 0.01 0.12
Housekeeping Temperatures, voltages, states, etc. 100 0.001 0.4

1 The table is included to illustrate the scale of the data flow. The signals with data rates in parentheses are not
continuously archived. The data rates (kbytes/s) are based on a sampling rate of twice the bandwidth, and a sampling

resolution of two bytes.
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G. Electrical Power

The estimated electrical power consumption for the LIGO installations is pre-
sented here. Because the power consumption for the fully evolved (Phase-C) LIGO
is only modestly larger than that for Phase A, the Phase-C estimates have been used
for planning the installed power capacity. The average annual power consumption
during Phase A is used for the purposes of estimating operating costs.

The estimates for capacity required and power consumption are summarized
in Table IV-G-1 for Site 1. A total installed capacity of 2 MW is planned at each
site.

TABLE IV-G-1
SITE 1 POWER CONSUMPTION

Capacity! (kW) | Average? (kW)

1. Lighting 143 45
2. HVAC 6403 4503
3. Vacuum pumps:

Beam tube roughing 20045

Chamber roughing 334 1

Ion pumps (first year of operation) 6

Ion pumps (fully operational) 1
4. Electronic equipment 2008 100
5. Shop and service equipment 60 28
6. Chamber bakeout heaters 804
7. Lasers (including cooling) 32048 160
8. Reserve 631

TOTAL 2000 785

IShort term peak transients excluded.

2 Average power consumption after startup of operations.

3Site dependent.

4 Will not operate simultaneously; only line 7 is included in total.
53.8 x 105 kW-h total.

6Phase-C maximum estimates.

The minimum lighting necessary for personnel and equipment is provided in
the large vacuum-chamber and laser areas, supplemented by high-intensity, local
lighting for work areas. Incandescent lighting will be used in these areas, for reduced
radio-frequency interference.

Power requirements for HVAC equipment may be traded off against capital
costs and are site dependent. Standard HVAC design practices, including the use
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of “economizers” and chilled-water plenums, have been assumed for the power and
cost estimates.?

Vacuum-roughing pumps are operated at a low-duty cycle and contribute neg-
ligibly to the average power consumption. The beam tubes are pumped down only
once, during startup operations. During beam-tube rough-pumping, none of the
lasers will be operating; during chamber rough-pumping, at least one laser (asso-
ciated with the interferometer(s) being evacuated) can be shut down temporarily.
The power required for the roughing pumps may thus be “borrowed” from the laser
power capacity, and need not be added into facility-power capacity requirements.
Similar reasoning is used for the chamber bakeout heaters, which are operated only
occasionally.?

Because of the low operating pressure of the LIGO, ion-pump power consump-
tion is negligible. The maximum occurs during the first year of operation and is
less than 6 kW.

1 1t s impractical to use dissipated heat from the lasers to heat the corner building because of
the low temperature (35 °C max.) of the coolant returned from the laser tubes.
2 Power for beam-tube bakeout will be provided by rented portable generators.
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V. SITES

A. Site Requirements

The scientific demands of the LIGO place a number of conditions on the selec-
tion of sites. These are summarized in Table V-1.

TABLE V-1
SITE SPECIFICATIONS

Number of sites 2

Distance between sites

minimum 2500 km
maximum 4500 km
Arm length (nominal) 4 km

Angle between arms

nominal 90 deg

tolerance + 15 deg
Slope of arms < 0.2 deg
Orientation, absolute No requirement
Orientation, relative Optimized for average of

coincidence projection alignment
and Virgo-optimized alignment!

1Refer to Volume 1, Section V.C for discussion.

The site requirements are met most economically by flat places that are large
enough to accommodate the interferometer arms. The sites should be far enough
from urban development to ensure that they are seismically and acoustically quiet,
but still within convenient distance of housing for resident and visiting staff. Elec-
trical power and road or rail access should be sufficiently close to allow economical
construction. Soils and drainage characteristics must be suitable for LIGO con-
struction, and environmental impact concerns must be addressable.

B. Site Investigation Process

An early survey of potential sites was conducted by Stone & Webster Engineer-
ing Corporation in 1983. The survey attempted to find flat areas in the continental
U.S. owned or controlled by the Federal Government or state governments, and
covered over 100 sites. One conclusion of this and other surveys is that the number
of suitable sites drops off sharply if the arm lengths exceed 4-5 km. A subsequent
JPL study conducted in 1984 identified more potential sites, and additional siting
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possibilities were brought to our attention by various interested parties. To illumi-
nate some of the issues involved in site selection, we briefly summarize our findings
for eight sample site candidates (Tables V-2 and V-3).! One site from Group I and
one from Group II could form a site pair that meets the specifications in Table V-
1.

TABLE V-2
EXAMPLES OF SITE CANDIDATES

GROUP 1 (“Western” Sites)

EAFB Edwards Air Force Base, California

INEL Idaho National Engineering Laboratory, Idaho
OVRO Owens Valley Radio Observatory, California
Sv Skull Valley, Utah

GROUP II (“Eastern” Sites)

COL Columbia Township, Maine

FD Fort Dix, New Jersey

LP Livingston Parish, Louisiana
NRAO NRAO Greenbank, West Virginia

Site investigations require a succession of increasingly costly studies, summa-
rized in Table V-3. Some studies have already been performed at certain sites, or
will be carried out under our present grant. Most require access to the land, and
therefore require landowners’ approval. The intent is not to fill out the matrix of
Table V-3, but to collect sufficient information to permit us to make a reasonable
judgment of the suitability of sites. Final site selection will not begin before this
proposal is approved by NSF. We will then undertake a site selection process, using
procedures approved by NSF, which will weigh scientific merit, availability, con-
struction suitability, and costs for each site. This process is meant to satisfy the
highest standards of scientific and technical review, and will be rigorous and thor-
ough in all respects. Upon approval by the NSF to proceed, the required additional
characterization studies will be done for the selected sites. The results of the hy-
drology and geotechnical studies and the topographic survey data will be furnished
to the engineering contractors for use in detailed design of the LIGO installations.

1 These eight sites are listed for illustration; no preference or final selection is implied.
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C. Site Development

Construction is initiated with surveying and earthwork for the beam-tube and
building foundations. Roads that access the LIGO stations are needed both during
and after construction.? Provisions for drainage and erosion control, connections
to power, water, and sewage utilities, fire protection, site cleanup and landscaping,
and fencing for site security and public safety are required. Although the details
of these activities vary widely among the candidate sites, site development costs at
all sites are dominated by the earthwork required to achieve a level layout of the
interferometer arms.

After site preparation and earthwork are complete, the foundations and floor
slabs for the stations and the foundation slabs for the beam-tube modules are laid.
Reference monuments are installed on the beam-tube-module foundations at 250 m
intervals (at the approximate locations of the pump stations). Each end station and
mid station has one reference monument, and there are three in the corner station.
The reference monuments are used to determine the final alignment of the beam
tubes (see Section IV.C.2.c.i).

2 Roadways and parking areas will be paved over a suitable base after the main construction
activities are completed, so that delicate equipment can be transported with minimum disturbance.

7



VI. IMPLEMENTATION PLAN

In this section, the organization of the LIGO work-breakdown structure is

described and the schedule for design and construction tasks is presented. The
organization and roles of the personnel who are responsible for implementing the
LIGO are discussed, and a subcontracting plan is presented. The section ends with
a discussion of the process for designing and fabricating the initial interferometers.

A. Work-Breakdown Structure
The work-breakdown structure (WBS) for the design and construction of LIGO

facilities and equipment, including initial interferometers, is shown! in Figure VI-
1. The WBS presents the organization of all construction-implementation activities
and is used to generate schedule and cost baselines. It includes

(1)

(2)

(3)

(4)

(3)

(6)

Site development. earthwork; roads; electrical utility connection, on-site sub-
station, and electrical-power distribution among stations; water supply; sewer
or septic tank; fire protection; site cleanup, landscaping, and fencing.

Enclosures: corner-station buildings for the vacuum-equipment and laser area,
office and shop areas, utility room, and chiller plant; end- and mid-station
buildings; electrical distribution within buildings; HVAC equipment, primary-
laser-cooling equipment, and cranes; beam-tube enclosures.

Vacuum equipment: all vacuum vessels (including ports and feedthroughs)
except the beam-tube modules; interferometer supports, intravacuum optical
benches, and vibration-isolation stacks; integral air showers and backfill sys-
tems; all pumps and valves, except those along the beam tubes; LNy supply
and distribution; adapters, caps, compensators and anchors; rough-pumping
lines; installation, bakeout, leak check and performance testing.

Beam-tube modules: beam-tube sections and supports, stiffeners, expansion
joints, cleaning, leak checking, sealing and shipping; field assembly (including
alignment), baffles; beam-tube pumps, pump tees, and instrumentation ports
and valves; system cleaning, leak check and bakeout.

Support equipment: lasers, laser-cooling heat exchangers and flow controllers,
optics and electronics for laser addition, laser stabilization, and optical ta-
bles; vacuum-system monitoring and control equipment; auxiliary-physical-
parameter instrumentation and data-acquisition equipment; data-logging and
display equipment; intrasite communications equipment; test and diagnostic
instrumentation and equipment; office and shop furnishings and equipment;
and security monitoring and control equipment.

Initial interferometer(s): optics, mechanical assemblies, and electronics for in-
put and output light conditioning; beam splitters and main cavity test-mass

1

The presentation of the WBS in Figure VI-1 is to Level 2, which will serve the purposes of the

discussions in this section. Details of the WBS are presented in tabular form in Appendix C.
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Figure VI-1 Work-breakdown structure (WBS) for the design and construction of the
LIGO facilities and equipment.
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assemblies; light phase/frequency stabilization servos; servos for pointing, posi-
tioning, and motion-damping of suspended components; automatic-alignment,
beam-centering, and mode-matching systems; servos for phase locking of lasers
between interferometers; and interferometer data acquisition, formatting, com-
pression, and interfacing to the LIGO data-logging system.

B. Organization and Responsibilities

LIGO design and construction will be implemented by the LIGO Engineering
Group, under the direction of the Chief Engineer.? The organization of the Engi-
neering Group during the design and construction phases is shown in Figure VI-2.

The Director (and Principal Investigator) has overall responsibility for the
LIGO Team effort in meeting project requirements and goals. The Director is
accountable to the NSF and, being resident at Caltech, to the Caltech Adminis-
tration, which accepts fiduciary responsibility for the LIGO Project. The Director
shall appoint and convene from time to time a Design Review Board, composed of
experts in relevant disciplines, to review and provide advice on the design and im-
plementation plans of the LIGO Engineering Group.

The Chief Engineer reports to the Director. The Chief Engineer is responsible
for management, control and accounting of LIGO configuration, schedule and cost.
The Chief Engineer will draw upon the scientific expertise of the LIGO Team to
provide guidance and evaluation of LIGO design and construction decisions. The
Chief Engineer shall apprise the Director of progress and anticipated or actual de-
viations from planning baselines, and recommend corrective action where necessary.

The Facilities Manager is responsible for site planning, enclosure design, site de-
velopment and enclosure construction at both sites. This person is also responsible
for acquisition and installation of shop equipment, office furnishings, and security
equipment. The Facilities Manager will be assisted by a Resident Engineer at each
site; they will monitor construction progress and design compliance, and will en-
gage the services of local testing laboratories as required to measure and document
as-built quality.

The Vacuum Equipment Manager is responsible for vacuum-system design, and
for the fabrication, installation, and testing of all vacuum equipment contained in
the stations.

The Beam Tube Manager is responsible for the mechanical design, shop fabri-
cation, field assembly, and testing of the beam-tube modules.

The Instrumentation and Data Systems Manager is responsible for the design,
procurement, installation, integration, and testing of the vacuum-system monitor-
ing and control equipment, auxiliary-physical-parameter instrumentation and data-
acquisition equipment, intrasite-communication equipment, data logging and dis-

2 Support and review functions for all engineering efforts will be provided on a continuing basis
by the science groups.
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Figure VI-2 Organization chart for the LIGO Engineering Group during design and

construction of the facilities.

play equipment, all software engineering and programming, and test and diagnostic

equipment.

The Interferometer Development Manager is responsible for design, fabrication,
installation, integration, and testing of lasers, optical components, and mechanical

assemblies and electronics for the initial LIGO interferometers.

The Instrumentation and Data Systems Manager and the Interferometer De-
velopment Manager will interact on a continuing basis with the scientists and the

research and development activities.

The Facilities and Equipment Design Team will be responsible for the coor-
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dinated design, development, construction, integration, testing and support of all
LIGO systems. It will be composed of the Facilities Manager, Vacuum Equipment
Manager, Beam Tube Manager, Instrumentation and Data Systems Manager, and
the Interferometer Development Manager, and will be chaired by the Chief Engi-
neer.

The LIGO Engineering Group will be supported by a Subcontracts Manager,
who will oversee subcontract development, negotiations and performance monitor-
ing;® a Financial Manager, who will monitor, correlate and report on cost and
schedule performance; and a Computer Systems Manager, who will be responsi-
ble for LIGO computer systems planning and operations. The group will draw
substantially upon Caltech’s Jet Propulsion Laboratory for technical advice and as-
sistance in such areas as site planning, soils engineering, Global Positioning System
surveying, power engineering, HVAC engineering, structural analysis, and reliabil-
ity, quality assurance, and safety engineering. Outside engineering consultants will
be engaged to assist in certain areas, such as ambient seismic and vibration trans-
mission measurements, vibration isolation of structures, geotechnical evaluation of
sites, mitigation of environmental or cultural disturbances during construction, and
other specialized problems outside the scope of major subcontractors’ activities for
which in-house expertise does not exist.

C. Design and Construction Schedule

The LIGO design and construction schedule for WBS Level 2 is shown in Fig-
ure VI-3. The schedule establishes a logical sequence of design and construction
activities, accommodates the anticipated NSF funding profiles, and meets the re-
quirements of the Level-1 schedule given in Volume 1, Section XII. A single field
crew will be responsible for vacuum equipment installation and testing at both sites,
and another single crew will be responsible for field assembly of the beam tubes
at both sites. Sequencing the vacuum-system field construction as shown in Fig-
ure VI-3, using the same crews at both sites, will provide continuity, efficiency and
enhanced quality.

The schedule provides long lead times for procurement of low-hydrogen-content
steel. Fabrication of beam-tube sections will be matched to the field assembly
process, so it will not be necessary to store large quantities of finished, cleaned,
tested, and sealed beam-tube sections.

3 The Subcontracts Manager, a procurement professional who is a member of the LIGO engi-
neering staff, technically provides only procurement liaison; fiduciary responsibility for all subcon-
tracting remains with the Caltech Purchasing Department, with review and approval by the Office
of General Counsel.
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Figure VI-3 LIGO design and construction schedule.
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D. Subcontracting Plan
1. Design phase

a. Facilities architectural and engineering design. The LIGO Project
will employ the services of one or more architectural, engineering and construction
(A&E) firms for detailed design and documentation covering site planning; corner-,
end-, and mid-station buildings; and tube enclosures for both sites. The facilities
design will be assigned to a single firm, or several firms forming a team, with appro-
priate expertise. The design-phase product will consist of construction documents
(detailed drawings and specifications) suitable for obtaining fixed-price bids for con-
struction. During the construction phase, the A&E firm will maintain control of
documentation, generating new documentation as required by design changes, and
participate in the review and resolution of nonconformances and claims. It will pro-
vide as-built documentation at the completion of construction. Management of the
A&E design subcontract for the facilities will be the responsibility of the LIGO Fa-
cilities Manager.

b. Vacuum equipment design (and construction). A subcontract will
be placed with a firm that has large-scale vacuum-system design and fabrication
experience to design the LIGO vacuum system, to perform detailed design of all
vacuum equipment except for the beam tubes, and to fabricate, install, and test
this equipment. Given the novel features of the LIGO vacuum equipment, it is
essential that a single subcontractor be responsible for design, fabrication, installa-
tion, and testing of an integrated system. Authority to proceed with fabrication,
installation, and testing will be given after the design-phase work has been success-
fully completed and reviewed. Management of the vacuum-equipment subcontract
will be the responsibility of the LIGO Vacuum Equipment Manager.

c. Beam tube design (and construction). A subcontract will be placed
with a firm to provide detailed design engineering, fabrication, installation, and
testing services for the beam-tube modules.* The design of the beam tubes has
been separated from the rest of the vacuum system because it departs substantially
from that of conventional vacuum systems and is more closely related to pipeline
construction. This division of design tasks entails no significant risk; the interfaces
between the beam-tube modules and the remainder of the vacuum system are few,
readily identified and documented. Management and supervision of the beam-tube
module subcontract will be the responsibility of the LIGO Beam Tube Manager.

Except for small subcontracts that may be placed for specific design tasks, all
other LIGO subsystems will be designed in-house.
2. Construction phase

a. Facility construction. Site development, and construction of corner-,

4 Although this subcontract may be performed by the same contractor responsible for the vacuum
equipment, this is not a requirement.
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end-, and mid-station buildings, and tube enclosures for both sites will be sub-
contracted to a single construction firm. The design-phase A&E subcontractor will
provide construction-phase configuration management, documentation maintenance
and change control, and implementation advice. Management and supervisory re-
sponsibility for facility construction lies with the Facilities Manager, supported by
a Resident Engineer at each site who provides on-site monitoring. Quality assur-
ance services will be provided by local testing laboratories, through subcontracts
arranged by the Resident Engineers.

b. Vacuum equipment fabrication. Installation and testing of vacuum
equipment will be performed by the design subcontractor, as discussed above. The
construction-phase subcontract will continue to be managed and supervised by the
LIGO Vacuum Equipment Manager; on-site installation and testing will be moni-
tored by the Resident Engineers.

c. Beam tube construction. Fabrication and field assembly of beam-tube
modules will be performed by the beam-tube-design subcontractor. Management
and supervision of the beam tube subcontract will be the responsibility of the LIGO
Beam Tube Manager, assisted during field assembly by the Resident Engineers.

d. Other. A substantial number of small construction-phase subcontracts are
anticipated for interferometer optics fabrication and testing, mechanical-assembly
fabrication, and electronics fabrication and testing. These will be governed by
detailed design drawings and specifications developed within the LIGO team, and
will be supervised by the Interferometer Development Manager.

All subcontracts will be competitively solicited, negotiated procurements.

E. Interferometer Design and Fabrication

The initial interferometers will be designed in the future, and a detailed work-
breakdown structure for fabrication and installation is therefore not available. The
research program described in Volume 1, Section VIIL.B will materially affect the
final design, now still in a conceptual phase. The Interferometer Development
Manager shall have responsibility for the efforts outlined below.

1. Interferometer design, fabrication and testing

The engineering design will begin by dividing the interferometer into a set of
functional subsystems. For each subsystem, we will specify technical and perfor-
mance specifications, a set of tasks that require detailed engineering definition and
design, a procedure and schedule for procurement and fabrication, and a description
of the test and qualification procedures. The initial interferometers will use common
subsystems designs, except for scaling some of the optical and electronic parame-
ters in the half-length interferometer. When practical, components or subsystems
will be fabricated through industrial subcontracts. Subsystems will be assembled,
inspected and tested® on campus prior to shipment to the sites for integration into

5 Although the campus facilities will be capable of assembly and testing of LIGO interferometer
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the initial interferometers.

2. Installation and operation of the initial LIGO interferometers

After construction at the first site is completed and the facility is accepted from
the contractors, LIGO engineering and scientific personnel will install the initial
interferometers. The same group will perform these functions at the second site
one year later (supported by a post-construction agreement), and will also train the
operations and facilities-maintenance staff.

Once an interferometer is functioning, data runs will be initiated to uncover
possible shortcomings in the performance of the interferometer or in the reliability
of the supporting facilities. Experience gained during installation of the first inter-
ferometer should allow installation of the additional interferometers to proceed with
few surprises. The operation of three interferometers in triple coincidence, consti-
tuting the initial LIGO detector, will complete the final shakedown of the LIGO
facilities and equipment.

subsystems, the first integration of all the subsystems of a LIGO interferometer will take place at

the remote sites.
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VII. COST SUMMARY

This proposal requests support for a 4-year program to design, build, and oper-
ate a Laser Interferometer Gravitational-Wave Observatory (LIGO) and to continue
research and development of interferometric detectors. At the end of this period,
construction and outfitting of the proposed facilities will be complete and we will
be ready to begin operations as described in Volume 1, Section VI.C.1. (At that
time, we expect to submit a proposal for the continued operation of the LIGO and
for continued research and development (R&D) of detector technology as well as
data analysis.!) In this section we present the total estimated cost and supporting
details of the proposed R&D, design and construction program.

The cost presentation is organized into three parts. Tables VII-1, VII-2, and
VII-3 give an overview of the complete program. The tables are followed by a
presentation of budget details in the standard NSF format, with supporting data.
Cost estimates for the LIGO design and construction project, with a few exceptions
noted below, are organized in accordance with the work-breakdown structure (WBS)
discussed in Section VI and presented in detail in Appendix C.

TABLE VII-1
LIGO PROJECT—TOTAL COST SUMMARY
FY89 $M

1991 1992 1993 1994 TOTAL Note:

Research and Development 3.0 3.0 3.0 3.0 12.0 1
LIGO Design and Construction 446 494 48.1 37.7 179.8 2
Remote Site Operations 2.0 2.0 3
TOTAL ESTIMATED COST, FY89 $M 47.6 524 511 427 193.8
Inflation allowance @ 5%/yr, FY89 base 49 83 11.0 1138 36.0
TOTAL ESTIMATED COST, ESCALATED $M 52.5 60.7 621 545 229.8

Note 1: Caltech/MIT on-campus research and development effort.

Note 2: Total cost of remote LIGO installations including initial interferometers, excluding ~$7.0M in local sales
taxes pending decision on ownership of LIGO facilities (government or private).

Note 3: LIGO remote site operations cost for first year, Site 1.

1 Cost estimates for the full operations phase following design and construction are presented in
Appendix B.
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Table VII-1 presents a total cost summary for the proposed program. Research
and Development provides for the activities described in Volume 1, Section VIIL.B,
including the related part of LIGO project salaries, supplies, expenses, and equip-
ment. LIGO Design and Construction covers the total estimated cost of the LIGO
facilities and initial interferometers, including the remainder of LIGO project sci-
entific, engineering, administrative, and management support. Remote Site Opera-
tions covers the cost of on-site permanent staff (see discussion in Volume 1, Section
VI), facility and equipment maintenance, and utilities for Site 1, where operations
will begin in the fourth year. All costs are given in FY 1989 dollars. An inflation
allowance, computed at a rate of 5% per year, is computed and added to the annual
FY 1989 dollar amounts shown.

TABLE VII-2
LIGO PROJECT—ANNUAL LEVELS OF EFFORT
FOR LIGO PROJECT STAFF DURING CONSTRUCTION PHASE!

FY89 $M
Research and Design and Remote Site
Development Construction Operations?
(Site 1)
Manpower:
Faculty (number involved) Six (6) total faculty involved in all activities
Staff Scientists (FTEs®) 6 5 1
Engineers/Programmers (FTEs) 3 8 1
Technicians (FTEs) 5 3 9
Administrative/Clerical (FTEs) 3 4 1
Graduate Research Assistants (number) 10
Undergraduate Research Ass’t (number) 12
Costs (FY89 $M):
Salaries and benefits 1.3 14 0.6
JPL support (2 FTEs) 0.3
Supplies, expenses, travel 0.2 0.3
Plant maintenance 0.6
Electrical power 0.7
Equipment 0.6
Overhead 0.9 1.0 0.1
TOTAL COST PER YEAR (FY89 $M) 3.0 3.0 2.0

;Colu.mns correspond to cost categories listed in Table VII-1.
3On-sl?e permanent staff, plant maintenance and electrical power costs, 1994 only.
Full-time equivalents (each represents 12 man-months).

Table VII-2 displays the annual levels of effort for LIGO project staff asso-
ciated with each of the three types of activity shown in Table VII-1. Manpower
requirements are in “full-time-equivalents” (FTEs) or number of persons involved,
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as appropriate. The total costs of the R&D program and the LIGO site operations
(Site 1 only) are included.

TABLE VII-3
LIGO PROJECT—DESIGN AND CONSTRUCTION COST SUMMARY
FY89 $M

1991 1992 1993 1994 TOTAL  Reference:!

1. LIGO team salaries, expenses, travel 3.0 3.0 3.0 3.0 12.0 Table VII-2

2. Facilities and equipment design2 10.0 1.8 1.6 1.0 14.4 WBS 1100-1700

3a. Site 1 facilities and equipment:
Site development 6.3 6.3 WBS 2100
Buildings 12.5 12.5 WBS 2200-2250
Beam-tube enclosure 6.6 6.6 WBS 2260
Vacuum equipment (except tubes) 125 10.1 22.6 WBS 2300
Beam tubes 8.9 4.9 13.8 WBS 2400
Support equipment 4.1 4.1 WBS 2500
Initial interferometers 1.0 1.0 3.0 5.0 WBS 2600

3b. Site 2 facilities and equipment:

Site development 5.5 5.5 WBS 3100
Buildings 8.8 8.8 WBS 3210-3250
Beam-tube enclosure 6.6 6.6 WBS 3260
Vacuum equipment (except tubes) 11.6 11.6 WBs 3300
Beam tubes 8.9 4.9 13.8 WBS 3400
Support equipment 3.7 3.7 WBS 3500
Initial interferometers 2.5 2.5 WBS 3600
3. Total, facilities and equipment (3a + 3b) 24.1 364 355 274 123.4
SUBTOTAL, Lines 1-3 37.1 412 401 314 149.8
4. Contingency @ 20% 7.5 82 8.0 6.3 30.0

TOTAL, DESIGN AND CONSTRUCTION 446 494 481 377  179.8

!WBS nnnn refers to the work-breakdown structure organization of cost in Appendix C, where further details may be found.
?Excluding instrumentation, data-acquisition system and interferometer design (performed in-house, included in Item 1).

Table VII-3 provides a further breakdown of the Design and Construction costs
and serves as an index to the detailed breakdowns provided in Appendix C. The
time phasing of costs reflects the schedule and subcontracting plan given in Section
VI. The following notes apply to the cost data presented in this section.

Period covered: The proposed period covers the design and construction phase,
a 4-year interval beginning December 1, 1990, and ending November 30, 1994. For
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simplicity, we have referred to the period from December 1, 1990 through November
30, 1991, as “1991,” and subsequent year references have a corresponding meaning,.

Ownership: We have assumed that title to LIGO facilities and equipment will
be retained by the U.S. Government during the construction phase, and transferred
to Caltech upon startup of regular operations. Consequently, local sales taxes have
been omitted.

Sites: The candidate sites with lowest estimated construction costs have been
used. The choice of different sites could substantially increase the estimated con-
struction costs.

Subcontracts: The subcontracting plan of Section VI includes four major sub-
contracts with professional or industrial firms. The attached NSF budget forms (not
tailored for a multi-year construction project) may convey the impression that these
subcontracts can be broken into separate parts for each budget year. It is in the
best interest of the LIGO Project and the Government to obligate these contractors
for the full term and full scope of the planned work (but including a “Limitation of
Obligation” clause to control the rate of funding). The cost estimates assume that
such agreements will be negotiated. Once these subcontracting arrangements have
been formally made, disruptions in funding will invariably lead to increased total
cost.

Design: “Design cost” refers to all costs associated with products and services
such as plans, drawings, specifications, studies, reports, investigations, shop drawing
review, inspection, testing, construction liaison and management provided by the
design subcontractors.

Contingency: Design and construction costs have been estimated based upon
the best available information. The unprecedented nature of the LIGO project
mandates a management reserve (to be held in the Director’s Office) of at least

20%.

MIT subcontract: All MIT costs for personnel, equipment, supplies, expenses,
and travel are merged with Caltech costs for the purposes of preparing this budget.
A separate subcontract will be negotiated with MIT for work associated with this
proposal.

Residual Funds Statement

We anticipate no residual funds at the end of the current grant funding period.
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SUMMARY

12/1/90 - 11/30/94 PROPOSAL BUDGET

CUMULATIVE BUDGET
{1989 dollars)

FOR NSF USE ONLY

QRGANIZATION PROPOSAL NO, DURATION (MONTHS)
CALIFORNIA INSTITUTE OF TECHHOLOGY Progosed Gronted
PAINCIPAL INVESTIGATOR/PROJECT GIAECTOR AWARD NO.
R. E. VO6T
. FI i N FUNDS UNDS
Ty i o531 st s ey 2 e I e
1. R. E. YOGT PI & PD, PROFESSOR OF PHYSICS 3 $
2. R. W. P. DREVER PROFESSOR OF PHYSICS
3. K. S. THORNE PROFESSOR OF THEORETICAL PHYSICS
4. R. MWEISS PROFESSOR OF PHYSICS, MIT
S. { 2)OTHERS(LIST INDIVIOUALLY ON BUDGET EXPLANATION PAGE]
6. { 6)TOTAL SENIOR PERSONNEL {1-5) 532,400
8. OTHER PERASONNEL (SHOW NUMBERS IN BRACKETS)
1. () POST DOCTORAL ASSOCIATES
2. ( ) OTHER PROFESSIONALS (TECHNICIAN, PROGRAMMER. ETC.) 1716 7,402,200
3¢ ) GRADUATE STUDENTS 480,000
4 () UNDERGRADUATE STUDENTS 240,000
s, | ) SECRETARIAL-CLERICAL 330,400
8. { ) OTHER
TOTAL SALARIES AND WAGES (A+8) 8,985,000
C. FAINGE BENEFITS (IF CHARGED AS DIRECT COSTS)  29.25% - excluiing undergrads 2,557,915
TOTAL SALARIES, WAGES AND FRINGE BENEFITS (A+B8+C) 11,542,916
O. PERMANENT EQUIPMENT (LIST ITEM AND COLLAR AMOUNT FOR EACH [TEM EXCEEDING $1.000]
TOTAL PEAMANENT EQUIPMENT 17,673,600
E._ TRAVEL 1. DOMESTIC (INCL. CANADA AND U.S. POSSESSIONS) 762,400
2, FOREIGN 50,400
F. PARTICIPANT SUPPORT COSTS
1. STIPENDS [ ]
2. TRAVEL
3. SUBSISTENGCE
4 QTHER
TOTAL PARTICIPANT COSTS
G. OTHEA OIRECT COSTS
1. MATERIALS AND SUPPLIES 1,282,000
2. PUBLICATION COSTS/PAGE CHARGES 22,800
J. CONSULTANT SERVICES
4. COMPUTER {(ADPE) SERVICES
5. SUBCONTRACTS 122,381,800
6. OTHER 32,423,832
TOTAL OTHER DIRECT COSTS 156,110,432
H. TOTAL DIRECT COSTS (A THROUGH G) 186,139,747
I. INDIRECT COSTS (SPECIFY)
TOTAL INNDIRECT COSTS 7,778,762
J. TOTAL DIRECT AND INDIRECT COSTS (H + 1) 193,918,509
K. RESIOUAL FUNDS (IF FOR FURTHER SUPPORT OF CURRENT PROJECTS SEE GPM 252 AND 253
L. AMOUNT OF THIS REQUEST {J) OR (4 MINUS K) $193,918,509 B
PI/PO TYPED NAME & SIGNATURE® OATE FOR NSF USE ONLY
INDIRECT COST AATE VERIFICATION
INST. REP. TYPEO NAME & SIGNATURE" DATE Oste Check Oats of Rate Sheat [Initisis - OGC
Progeam
NSF Form 1030 {1-87) Supersedes Al Previous Editions *SIGNATURES REQUIRED ONLY #OR REVISED
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RESEARCH AND DEVELOPMENT,

LIG0 DESIGN AND CONSTRUCTION SUMMARY
PROPOSAL BUDGET

12/1/90 - 11/30/91

FIRST YEAR - 1991
(1989 dollars)

FOR NSF USE ONLY

ORGANIZATION
CALIFORNIA INSTITUTE OF TECHNOLOGY

PROPOSAL NO.

OURATION (MONTHS)

Proposea

Granted

PRINCIPAL INVESTIGATOR/PROJECT DIRECTOR
R. E. VO&T

AWA

RO NO.

: Y ; . N FUNDS NEE
N e vamarataty wieh it &, 4o mamoes 1 oacusry 1 A4 Do | nealdiith oy Tomantiin. o
1. R. E. VOGT PI & PD, PROFESSOR OF PHYSICS 3 [}
2. R. W. P. DREVER PROFESSOR OF PHYSICS
3. K. S. THORHE PROFESSOR OF THEORETICAL PHYSICS
4. R. WEISS PROFESSOR OF PHYSICS, MIT
S. { 2 JOTHEAS (LIST INDIVIDUALLY ON BUDGET EXPLANATION PAGE)
6. (6 ) TOTAL SENIOR PERSONNEL (1-5) 133,100
8. OTHER PEASONNEL (SHOW NUMBERS IN BRACKETS)
1. () POST DOCTORAL ASSOCIATES
2. { 33) OTHER PROFESSIONALS (TECHNICIAN, PROGRAMMER, ETC} 396 1,746,800
3. ( 10) GRADUATE STUDENTS 120,000
4 { ]12) UNDERGRADUATE STUDENTS 60,000
5. ( 4) SECRETARIAL-CLERICAL 75,100
8. ( ) OTHER
TOTAL SALARIES ANDO WAGES (A+8) 2,135,000
C. FRINGE BENEFITS (IF CHARGED AS DIRECT COSTS)  29.25% - excluding undergrads 606,938
TOTALSALARIES, WAGES AND FRINGE BENEFITS (A+B+C) 2,741,938
O. PEAMANENT EQUIPMENT (LIST ITEM AND DOLLAR AMOUNT FOR EACH ITEM EXCEEDING $1.000)
TOTAL PEAMANENT EQUIPMENT See buiget explanation page 2 626,250
E. TRAVEL 1. OOMESTIC (INCL. CANADA AND U.S. POSSESSIONS) 190,000
2. FOREIGN 12,600
See buiget explanation page 3
F. PARTICIPANT SUPPORT COSTS
1. STIPENDS [ ]
2. TRAVEL
3. SUBSISTENCE
4. OTHER
TOTAL PARTICIPANT COSTS
G. OTHER DIAECT COSTS
1. MATERIALS AND SUPPLIES See buiget explanation page 4 320,500
2. PUBLICATION COSTS/PAGE CHARGES 5,700
3. CONSULTANT SEAVICES
4. COMPUTER (ADPE) SERVICES
S. SUBCONTRACTS See bulget explanation pages 5 - 9 33,976,500
6. OTHEA See buiget explanation page 10 7,779,958
TOTAL OTHER DIARECT COSTS 42,082,658
H. TOTAL DIRECT COSTS (A THRAOUGH G) 45,653,446
I. INOIRECT cOsTs (sreciry) 58X of T.D.C. excluding equipment, subcontracted amounts
beyond first $25,000 of each subcontract (5), JPL work order, and contingency
TOTAL INDIRECT COSTS 1,969,528
J. TOTAL OIMECT AND INDIAECT COSTS (H + 1) 47,622,974
K. RESIODUAL FUNDS (IF FOR FURTHER SUPPOAT OF CUARENT PAOJECTS SEEGPM 252 AND 253}
L. AMOUNT OF THIS AEQUEST (J) OR (4 MINUS K) 3 47,622,974 B

PI/PO TYPED NAME & SIGNATURE® DATE FOR NSF USE ONLY
INOIRECT COST AATE VERIFICATION
INST. AEP. TYPEDONAME & SIGNATURE® BDATE Check Oata of Aats Shest Jinitial - OGC

Program

NSPF Form 1030 {1-87) Supersedes AN Provious Editions
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RESEARCH AND DEVELOPMENT ,

LIG0 DESIGN AHD CONSTRUCTION SUMMARY

SECOMD YEAR - 1992
(1989 dollars)

12/1/91 - 11/30/92 PROPOSAL BUDGET

FOR NSF USE ONLY

QAGANIZATION PROPOSAL NO, DURATION (MONTHS)
CALIFORMIA INSTITUTE OF TECHHOLOGY Prooosed Granies
PRINCIPAL INVESTIGATOR/PROJECT DIAECTOR AWARD NO.
R. E. V06T
. oy N N FUN
e e ey Ao TORTRRES | e o P28 o Teman L
1. R. E. VOGT PI & PD, PROFESSOR OF PHYSICS $ s
2. R. M. P. DREVER PROFESSOR OF PHYSICS
3. K. S. THORHE PROFESSOR OF THEORETICAL PHYSICS
4. R. MEISS PROFESSOR OF PHYSICS, MIT
S, { 2 VOTHERS({LIST INDIVIDUALLY ON BUDGET EXPLANATION PAGE)
8. { 6 ) TOTAL SENIOR PERSONNEL (1-5) 133,100
B. OTHER PEASONNEL (SHOW NUMBERS IN BAACKETS)
1. ()} POST DOCTORAL ASSOCIATES
2. { 33) OTHERA PRAOFESSIONALS (TECHNICIAN, PROGRAMMER, ETC.) 396 1,746,800
3. { 10) GRADUATE STUDENTS 120,000
4 ( 12) UNDERGRADUATE STUDENTS 60,000
S. ( 4 ) SECRETARIAL CLERICAL 75,100
6. { ) OTHEAR
TOTAL SALARIES AND WAGES (A+8) 2,135,000
C. FRINGE BENEFITS (IF CHARGED AS DIAECT COSTS! 29_25% - excluding undergrads 606,938
TOTALSALARIES, WAGES AND FRINGE BENEFITS (A+8+C) 2,741,938
O. PERMANENT EQUIPMENT (LIST ITEM AND DOLLAR AMOUNT FOR EACH ITEM EXCEEDING $1,000:}
TOTAL PEAMANENT EQUIPMENT  See budget explanation page 2 1,537,250
E. TRAVEL 1. DOMESTIC (INCL. CANADA AND U.S. POSSESSIONS) 191,600
2. FOREIGN 12,600
See budget explanation page 3
F. PAARTICIPANT SUPPOAT COSTS
1. STIPENDS [ ]
2. TRAAVEL
3. SUBSISTENCE
4. OTHER
TOTAL PARTICIPANT COSTS
G. OTHER DIRECT COSTS
1. MATERIALS AND SUPPLIES See budget explanation page 4 320,500
2. PUBLICATION COSTS/PAGE CHARGES 5,700
3. CONSULTANT SEAVICES
4. COMPUTER (ADPE) SERVICES
S. SUBCONTRACTS See bulget explanation pages 5 - 9 37,180,300
6. OTHER See buiget explanation page 10 8,479,958
TOTAL OTHER OIRECT COSTS 45,986,458
M. TOTAL DIRECT COSTS (A THROUGH G) 50,469,846
1. INDIMECT cOsTS (speciey) 58% of T.D.C. excluding equipment , subcontracted amounts
(first $25,000 incurred during first year), JPL work order, and contingency
TOTAL INDIRECT COSTS 1,897,956
J. TOTAL DIRECT AND INDIRECT COSTS (H + 1) 52,367,802
K. AESICUAL FUNDS (IF FOR FURTHER SUPPOAT OF CURAENT PROJECTS SEEAPM252AND23Y)
L. AMOUNT OF THIS REQUEST (J) OA (J MINUS K) $ 52.367,802 B
?1/PO TYPED NAME & SIGNATURE® OATE FOR N3P USS ONLY
INGIRECT COST RATE VERIFICATION
[TNST. REP. TYPED NAME & SIGNATURG® DATE Check Date of Rats Sheat [initisls - OGC
Program

NSP form 1030 {1-87} Supersedes A4 Previoua Editions *SIGNATU
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RESEARCH AND DEVELOPMENT ,

SUMMARY
L160 DESIGN AND CONSTRUCTIONR
12/1/92 - 11/30/93 PROPOSAL BUDGET

THIRD YEAR - 1993
(1989 dollars)

FOR NSF USE ONLY

ORGANIZATION
CALIFORNIA INSTITUTE OF TECHNOLOGY

PROPOSAL NO.

OURATION (MONTHS)
Prapasea Granted

PRINCIPAL INVESTIGATOR/PROJECT DIRECTOR
R. E. VO&T

AWARD NO.

- Y i N FUNDS
* (sf;t?:::i:f:::i‘:i,‘: 't/l!’!?::’ :n'o:.::::;:vn:: Sf:;.sn'f"" Artossten CEL. 5?{"8 %R "‘EpQAJOEFSgsEEDRav ﬁr:Agr:EFDE%vE :ﬁ'p)
1. R. E. VO&T PI & PD, PROFESSOR OF PHYSICS i s
2. R. W. P. DREVER PROFESSOR OF PHYSICS
3. K. S. THORNE PROFESSOR OF THEORETICAL PHYSICS
4. R. WEISS PROFESSOR. OF PHYSICS, HIT
S. (2 JOTHERS(LIST INDIVIDUALLY ON BUDGET EXPLANATION PAGE!
6. { 6 )TOTAL SENIOR PERSONNEL (1-5} 133,100
8. OTHER PEASONNEL (SHOW NUMBERS IN BRACKETS)
1. () POST DOCTORAL ASSOCIATES
2. ({33 ) OTHER PROFESSIONALS (TECHNICIAN, PROGRAMMER. ETC.) 396 1,746,800
3. (10 ) GRADUATE STUDENTS 120,000
4. (12 ) UNDERGRADUATE STUDENTS 60,000
5. ( 4 ) SECRETARIALCLERICAL 75,100
8. ( ) OTHER
TOTAL SALARIES ANO WAGES (A+8) 2,135,000
C. FRINGE BENEFITS (IF CHARGED AS DIAECT COSTS)  29.25% - excluding undergrads 606,938
TOTAL SALARIES, WAGES AND FRINGE BENEFITS (A+8+C) 2,741,938
O. PERMANENT EQUIPMENT (LIST ITEM AND DOLLAR AMOUNT FOR EACH ITEM EXCEEDING $1,000 )
TOTAL PERMANENT EQUIPMENT  See budget explanation page 2 5,733,450
E. TRAVEL 1. DOMESTIC (INCL. CANADA AND U.5. POSSESSIONS) 192,400
2. FOREIGN 12,600
See buiget explanation page 3
£. PARTICIPANT SUPPOAT COSTS
1. STIPENDS [
2. TRAVEL
3. SUBSISTENCE
4. OTHER
TOTAL PAATICIPANT COSTS
G. OTHER DIRECT COSTS
1. MATERIALS AND SUPPLIRS See budget explanation page 4 320,500
2. PUBLICATION COSTS/PAGE CHARGES 5,700
3. CONSULTANT SEAVICES
4. COMPUTER (ADPE) SERVICES
S. SUSCONTRACTS See budget explanation pages 6 - 9 31.997.600
6. OTHER See buiget explanation page 10 8,279,958
TOTAL OTHER DIRECT COSTS 40,603,758
H. TOTAL DIRECT COSTS (A THROUGH G) 49,284,146
L. INDIRECT COSTS (SPeciry) 58% of T.D.C. excluding equipment, subcontracted amounts
(first $25,000 incurred during first year), JPL work order, and contingency
TOTAL INDIRECT COSTS 1,898,420
J. TOTAL DIRECT AND INDIRECT COSTS (H + 1) 51,182,566
K. RESIDUAL FUNDS (IF FOAR FURTHER SUPPOAT OF CURRENT PROJECTS SEEGPM 252 AND 283}
L. AMOUNT OF THIS AEQUEST (J) OR (J MINUS K} $ 5],
PHPO TYPED NAME & SIGNATURE * DATE FOR NBF USSE ONLY
INOIRECT COST RATE VEAIBICATION
INST. AEP. TYPEDNAME & SIGNATUAR® CATE Check Oats of Aats Shest [initial - OGC
Prograrn
NSF Form 1030 (1-87) Supersedes AN Previous Editions *SIGNATURES AEQUIAED ONLY FOA AGVISED
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RESEARCH AND DEVELOPMENT,
LIGO DESIGN AND COMSTRUCTION
12/1/93 - 11/30/94

SUMMARY
PROPOSAL BUDGET

FOURTH YEAR - 1994
(1989 dollars)

FOR N3P USE ONLY

OAGANIZATION
CALIFORHIA INSTITUTE OF TECHHOLOGY

PROPOSAL NO.

OUAATION (MONTHS)

Proposes Granted
PRINCIPAL INVESTIGATOR/PAGJECT DIRECTOR AWARD NO.
R. E. YO6T
- YD 3 N FUNDS ] 1
o e e i e 8% o i ey AT 2 R P sy
1. R. E. YO&T PI & PD, PROFESSOR OF PHYSICS 3 s
2. R. W. P. DREVER PROFESSOR OF PHYSICS
3. K. S. THORME PROFESSOR OF THEORETICAL PHYSICS
4. R. WEISS PROFESSOR_OF PHYSICS, MIT
5. { 2 )OTHERS (LIST INDIVIOUALLY ON BUDGET EXPLANATION PAGE)
8. (6§ ) TOTAL SENIOR PERSONNEL {1-5) 133,100
8. OTHER PERSONNEL (SHOW NUMBERS IN BRACKETS)
1. { ) POST DOCTORAL ASSOCIATES
2. 33) OTHER PROFESSIONALS (TECHNICIAN, PROGRAMMER, ETC.) 396 1,746,800
3. { 10) GRADUATE STUDENTS 120,000
4. 12) UNDERGRADUATE STUDENTS 60,000
s. ( 4) SECRETARIAL-CLERICAL 75,100
8. () OTHEA
TOTAL SALARIES AND WAGES (A+8) 2,135,000
C. FAINGE BENEFITS (IF CHARGED AS DIRECT cOSTSI 29.25% - excluding undergrads 606,938
TOTAL SALARIES, WAGES AND FRINGE BENEFITS (A+8+C) 2,741,938
D. PEAMANENT EQUIPMENT (LIST ITEM AND DOLLAR AMOUNT FOR EACH ITEM EXCEEDING 81,000/
TOTALPERAMANENT EQUIPMENT  See budget explanation page 2 9,776,650
€. TRAVEL 1. DOMESTIC (INCL. CANADA AND U.S. POSSESSIONS) 188,400
2. FOREIGN 12,600
See budget explanation page 3
E. PAATICIPANT SUPPORT COSTS
1. STIPENDS ]
2. TRAVEL
3. SUBSISTENCE
4. OTHER
TOTAL PARTICIPANT COSTS
G. OTHER OIARECT COSTS
1. MATERIALS AND SUPPLIES See budget explanation page 4 320,500
2. PUBLICATION COSTS/PAGE CHANGES 5,700
3. CONSULTANT SEAVICES
4. COMPUTER (ADPE) SEAVICES
5. SUBCONTAACTS See bulget explanation pages 5 - 9 19,227,400
8. OTHER See bulget explanation page 10 6,579,958
TOTAL OTHER DIAECT COSTS 26,133,558
M. TOTAL DIRECT COSTS (A THROUGH G) 38,853,146
. INDIRECT COSTS (sPeCiry) 58X of T.D.C. excluding equipment, subcontracted amounts
(first $25,000 incurred during first year), JPL work order, and cont ingency
TOTAL INDIRECT COSTS 1,896,100
J. TOTAL DIRECT AND INDIRECT COSTS (M + 1) 40,749,246
K. AESICUAL FUNDS (18 FOR FUATHER SUPPORT OF CURRENT PROJECTS SEEGPM 252AND 253)
L. AMOUNT OF THIS REQUEST (J) OR (J MINUS X) $ 40,749,246 B
PI/PO TYPED NAME & SIGNATURE® DATE FOR N3P USE ONLY
INDIRECT COST RATE VEAIFICATION
INST. AEP. TYPED NAME & SIGNATURE® OATE Check Dats of Asta Sheat Jinitish - DGC
Program
NSP Form 1030 (1-87) Supersedes AN Previous Ecitions *SIGNATURES AEQUIASDO ONLY Vi ]
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REKOTE SITE OPERATIONS
(site 1) SUMMARY

FOURTH YEAR - 1994
(1989 dollars)

12/1/93 - 11/30/94 PROPOSAL BUDGET

FOR N3F USE ONLY

CALIFORMIA INSTITUTE OF TECHMOLOGY

ORGANIZATION PROPOSAL NO.

OURATION (MONTHS)

Propaea Granted

R. E. YO&T

PRINCIPAL INVESTIGATOR/PROJECT GIAECTOR AWARD NO.

»

{List each soparataly with title; A.8. show numbar in brackats) CAL

. SENIOR PERSONNEL: PI/PD, Co-Pl's, Facully and Other Senior Associates PeRLANREE Aeal 33 av cRARvIDS
- Y
acaCBUMA| N

PROPOSER {IF QIFFERENT)

R. E. YO&T PI & PD, PROFESSOR OF PHYSICS

3 )

R. H. P. DREVER PROFESSOR OF PHYSICS

K. S. THORHE PROFESSOR OF THEORETICAL PHYSICS

R. WEISS PROFESSOR OF PHYSICS, WIT

. {2 VOTHERS (LIST INDIVIDUALLY ON BUDGET EXPLANATION PAGE)

{ 6 ) TOTAL SENIOR PERSONNEL {1-5)

. OTHER PEASONNEL (SHOW NUMBERAS IN BRACKETS)

N ) POST DOCTORAL ASSOCIATES

. (11) OTHER PROFESSIONALS (TECHNICIAN, PROGRAMMER, ETC.) 132

415,000

{ } GRAODUATE STUDENTS

) UNDERGRADUATE STUDENTS

30,000

s[epPTRFT=a[s[s[c]=]=

{
. (1) SECRETARIAL-CLERICAL
{ ) OTHER

TOTAL SALARIES ANO WAGES (A+8)

445,000

C. FAINGE BENEFITS {IF CHARGED AS DIRMECT COSTS) 29.25%

130,163

TOTAL SALARIES, WAGES AND FRINGE BENEFITS (A+@+C)

575,163

D. PEAMANENT EQUIPMENT {LIST ITEM AND DOLLAA AMOUNT FOR EACH ITEM EXCEEDING $1,000:)

TOTALPERAMANENT EQUIPMENT

€. TRAVEL 1. DOMESTIC (INCL. CANADA AND U.S. POSSESSIONS)

2. FOREIGN

F. PAATICIPANT SUPPOAT COSTS
. STIPENDS s

. TRAVEL

. SUBSISTENCE
. OTHER

» W N -

TOTALPARTICIPANT COSTS

G. OTHER DIRECT COSTS

1. MATEAIALS AND SUPPLIRS

. PUBLICATION COSTS/PAGE CHARGES

. CONSULTANT SEAVICES

. COMPUTER (ADPE) SEAVICAS

. SUBCONTRACTS

Giaiaiwin

. OTHER See budget explanation page 10

1,304,000

TOTAL OTHER DIRECT COSTS

1,304,000

H. TOTAL OIRECT COSTS (A THROUGH G)

1,879,163

t. INOIRECT COSTS (SPECIEY) 20.3% of salaries amd benefits

TOTAL INDIRECT COSTS

116,758

J. TOTAL DIRECT AND INDIRECT COSTS (K + 1)

1,995,921

K. AESIOUAL FUNDS (IF FOA FURTHER SUPPOAT Of CUARENT PROJECTS SEEGPM 252 AND 253}

L. AMOUNT OF THIS REQUEST (J) OR (4 “iNUS K}

$ 1,995,921

PI/PO TYPED NAME & SIGNATURAE® DATE FOR NBPE USE ONLY

INDIRECT COST RATE VEAIFICATION

NSP# Form 1030 (1-87) Supersedes AN Previous Editons *SIGNATURES REQUIARD ONLY 0 VisE

96

INST. REP. TYPEDONAME & SIGNATURG® DATE Check Oats of Aste Sheet Jinitiais - OGC

Pragram

BUDQAT (GPFM 233)
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CURRENT AND PENDING SUPPORT FOR RESEARCH
AND EDUCATION IN SCIENCE AND ENGINEERING

Name of Investigator: Kip S. Thorne

Source Project Title Award Period Calendar | Location of
of Sup- Amount Year % of Research
port Effort

Current:

NSF Relativistic Astrophysics $215,200 2/15/89 50 Caltech

2/14/90

NASA | Investigations of Stellar $224,000 2/1/88 T* Caltech
Oscillations 1/31/90

NASA | Theoretical Studies of Active $420,493 1/1/88 8* Caltech &
Galactic Nuclei 12/31/89 other

institutions

NSF Continued Prototype Research & $3,954,564 12/1/88 15%* Caltech &
Development & Planning for the 11/30/89 MIT
Caltech/MIT Laser Gravitational
Wave Detector (Physics)

Pending:

NASA Investigations of Stellar $114,000 2/1/90 T* Caltech
Oscillations 1//31/91

NASA Theoretical Studies of Active $226,119 1/1/90 8* Caltech &
Galactic Nuclei 12/31/90 other

institutions

NSF Relativistic Astrophysics $160,000 11/1/90 50 Caltech

10/31/91

NSF Continued Prototype Research & $3,999,994 12/1/89 15%* Caltech &
Development & Planning for the 11/30/90 MIT
Caltech/MIT Laser Gravitational
Wave Detector (Physics)

NSF The Construction, Operation, $193,918,509 12/1/90 15%* Caltech &
and Supporting Research and 11/30/94 MIT
Development of a Laser
Interferometer
Gravitational-Wave Observatory

*Thorne receives no salary from these grants (current or pending). The 7% and 8% included in 50%

shown for Thorne’s current and pending grants.

**15% included in 50% shown for Thorne’s current NSF grant; 15% included in Thorne’s 50% shown for
pending NSF grant. Thorne receives no salary from this grant.
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of these beam crossings, refer to Figure II-2 in Section I1.D; note that beams for
pairs of test masses (e.g., 1-2, 3-4, 5-6) are at different heights. Test-mass pairs at
the same height belong to full-length and half-length interferometers of the same

vacuum envelopes where the beams of different detectors intersect. The intersec-
tions shown in Figures A-1 and A-2 are actually small modules composed of inter-

connected. This arrangement satisfies the requirement of permitting service access
to one detector without disturbing another detector,

The cost of expansion from the proposed Phase-A LIGO to a Phase-B configura-
tion, using current estimates, is about $40M (FY89 dollars). This includes the man-
ufacture, installation, and testing of the vacuum equipment (Site 1: eight Type 1

ometers. It does not include the cost of LIGO-team work force, expenses or travel
associated with the planning and supervision of the expansion or the development,
installation, or testing of the interferometers,

Expansion from a Phase-B configuration to a Phase-C configuration would cost
a similar amount ($40M).
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Horizontal Axis Module
(HAM Chamber)
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Laser Table

Figure A-1 Layout of corner-station vacuum chambers for Site 1, Phase C, to accom-
modate six independently operating interferometers. The configuration is an.extension
of the basic layout described in Figure IV-C-6 and shows how the modular chamber con-
cept of the initial phase A design allows for the expansion of the facility’s capabilities.
New components, not needed in the initial phase, are the beam-crossing modules placed
between the HAM chambers. The phase B configuration would include the chamber
complexes for four interferometers.
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SCALE

Figure A-2 Layout of corner-station vacuum chambers for Site 2, Phase C, to acco-
modate three independently operating interferometers. The Phase-B configuration would
include the chamber complexes for two interferometers.
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Test Mass Chamber
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i\b Valve
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SCALE

Figure A-3 Phase-C vacuum system layout in (a) the end stations (Site 1 and Site 2)
and (b) the mid stations (Site 1 only). Two Type 1 test-mass chambers are added to
each station in the positions reserved during the Phase-A construction (see Figure IV-
C-15). The Phase-B configuration would include only one additional Type 1 test-mass

chamber in each station.
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Figure A-4 Floor plan for the Site 1 corner station in Phase C.
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A-7

Figure A-5 Floor plan for the Site 2 corner station in Phase C.
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Figure A-6 Floor plan of the right-arm end stations for Phase C (common to both
sites). The left-arm end stations have similar (mirror-imaged) floor plans.
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Figure A-7 Floor plan of the right-arm mid station at Site 1, Phase C.
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APPENDIX B

POST-CONSTRUCTION OPERATIONS COST

We present an estimate of the costs of maintaining and operating the LIGO
facilities. These activities are subsequent to design and construction and are beyond
the scope of this proposal. Table B-1 illustrates our best guesses for manpower
requirements and cost of steady-state (e.g., Phase B) LIGO operations.

TABLE B-1
OPERATIONS PHASE
LEVEL OF EFFORT AND ANNUAL COSTS

FY89 $M
On-campus Remote Site Remote Site
R&D, Operations! Operations!
Operations (Site 1) (Site 2)
Management,

Data Analysis

Manpower:
Faculty (number involved) 6
Staff Scientists/Postdoctoral Associates (FTEs?) 16 1 1
Engineers/Programmers (FTEs) 8 1 1
Technicians (FTEs) 8 9 9
Administrative/Clerical (FTEs) 5 1 1
Graduate Research Assistants (number) 12
Undergraduate Research Ass’t (number) 12
Costs (FY89 $M):
Salaries and benefits 2.7 0.6 0.6
Supplies, expenses, travel 0.4
Plant maintenance 0.6 0.5
Electrical power 0.7 0.6
Equipment 1.0
Overhead 1.9 0.1 0.1
TOTAL COST PER YEAR (FY89 $M) 6.0 2.0 1.8

!On-site permanent staff, plant maintenance and electrical power costs.
2Full-time equivalents (each represents 12 man-months).

Anticipated staffing requirements are discussed in Volume 1, Section VI. Stated
briefly, the on-campus (Caltech and MIT) staff will: (1) pursue continuing research
and development of advanced interferometer technologies; (2) develop, fabricate, in-
stall and test improvements to the LIGO remote site facilities and interferometers;
(3) develop and install new interferometers; (4) provide planning and oversight of
the operations of the remote sites; and (5) conduct gravitational-wave observations,

B-1




interpretation, and data analysis. Personnel at the two remote sites will be respon-
sible for direct operation and maintenance of the facilities, and will provide techni-
cal assistance to visiting scientific and engineering staff. The cost of operations at
the reduced-capability Site 2 is expected to be slightly lower than that at Site 1.
The total operating cost of the LIGO is estimated to be about $9.8M per year, in
1989 dollars.

This sum does not include capital costs for new interferometers. From time to
time, installation of complete new interferometers is expected which are optimized
for different scientific objectives, or which employ different principles from the ex-
isting interferometers. Based on estimates for the initial interferometers, each new
interferometer would cost about $2.5M; a complete triple-coincidence detector would
cost about $7.5M.

B-2



APPENDIX C

DESIGN AND CONSTRUCTION COST DETAIL

This appendix presents the estimated design and construction costs for the
LIGO and the basis for individual cost items, organized according to the work-
breakdown structure (WBS) discussed in Section VI (see Figure C-1). Note that
WBS elements 1800, 1900, and 4000 are not analyzed here; these represent on-
campus expenditures accounted for in Section VII, Table VII-3, line 1.

The cost presentation is organized into three parts. Part I presents a Summary
of the Level 1 WBS elements, and Part II presents the Supporting Deta:l. In Part I,
an entry in the column labeled “BOE” (Basis Of Estimate) provides a code letter
that defines the estimating method or a page reference to Part III, Unit Cost Detail,
which provides further breakdown and source information.

The BOE codes are defined as follows:

“A” = Building and construction tables. Building and construction cost esti-
mates have been extracted from two sources: Building Construction Cost
Data, 1989 [C-1], and National Construction Estimator, [C-2]. Where
ranges are provided by the source, a judgment has been applied, account-
ing for known factors which may bias the relative cost. Where no relative
weighing factors are known, the arithmetic mean of the range has been
used.

“B” = Published prices. Prices have been obtained from current catalogs or
price lists. Applicable discounts have been incorporated. This is the pre-
ferred method of estimating and has been used whenever possible.

“C” = Vendor quotes. Several vendors have been asked to provide budgetary
estimates, and the average price within the competitive range has been
used.

“D” = In-house analyses. A detailed study has been performed and a detailed
cost-estimating document has been prepared.

“E” = Engineering estimates. Where no other means for determining price
is available, LIGO engineers with experience in the relevant field have
supplied estimates.

Contractor GE&A and Fee: All cost estimates reflect direct costs, as deliv-
ered to the purchaser of the item or service. Where use of a general contractor
is contemplated (WBS 2100-2400, 3100-3400; see Section VI.D), provision for the
contractor’s general and administrative (G&A) expenses and fee is included and
separately stated. A rate of 23.8% is used, as recommended by Reference [C-2].
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Figure C-1 (facing page) Work-breakdown structure (WBS) for the design and
construction of the LIGO facilities and equipment. (The figure is identical to Figure
VI-1 in the main text.)
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APPENDIX D

MEASURED OUTGASSING PROPERTIES OF STAINLESS STEEL

Tests were conducted in a vacuum test facility (VTF) constructed as part of
a study on the outgassing properties of stainless steel. This appendix describes
these tests, which show that the LIGO vacuum system can be simplified in design
and improved in performance by fabricating the beam tubes from a special low-
hydrogen-content stainless steel.

1. Low-Hydrogen Stainless Steel

The vacuum obtainable in a stainless-steel vacuum vessel is typically limited
by outgassing of water adsorbed on the metal surfaces and by diffusion of hydrogen
from the bulk to the surface. A mild bakeout (at temperatures of about 100 °C)
can reduce the water-outgassing to the extent that hydrogen gas is the principal
constituent. In small vacuum systems the hydrogen-outgassing problem may be
remedied either by a long high-temperature bakeout (800-950 °C is typical) or by
a large increase in the pumping speed of the system. Neither technique is practical
for the LIGO beam tubes.

An alternative is to reduce the hydrogen content of the stainless-steel stock prior
to fabrication of the vacuum hardware. Vacuum-processing of the molten stainless
steel (“vacuum melting”) is effective, but would triple the cost of the stock material
and could result in major procurement delays because of the limited facilities for
such processing. Another approach is to subject coiled stainless-steel sheet to two
special annealing steps in which the material is heated in a hydrogen-free purge gas
for 24 hr. This annealed product is only nominally more expensive than standard
stainless steel and is readily produced in large quantities.

A sample of type 304L stainless steel, processed for low hydrogen content by
the annealing method, was developed and kindly provided to us by J&L Specialty
Products Corporation, Pittsburgh, PA. Initial hydrogen content measurements by -
commercial laboratories on specimens cut from this sample proved inconclusive;
their measurement sensitivity seemed to be below our requirements. For this reason
we constructed the VTF (Figure D-1) to make direct measurements of outgassing
rates in a carefully calibrated apparatus.

2. Sample Preparation

The procured sample was 50 inches wide and 0.155 inches thick, with a No. 1
hot-rolled finish (nominally 0.00015 inches rms, the roughest, least-costly finish
available). Four cylindrical chambers, 30-cm diameter by 1.2-m long, were fab-
ricated from this sample. Electron-beam welding (performed in an evacuated en-
vironment) was used to eliminate the possibility of dissolving additional hydrogen
into the welds. A prebaked 2.75 inch conflat flange and half nipple was welded onto
one end of each chamber. Prior to final assembly, a different cleaning procedure
was used on the interior surfaces of each cylinder (see Table D-1).
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Figure D-1 Schematic diagram of the vacuum test facility (VTF) designed to mea-
sure gas flow from the test chambers. The VTF is an all-metal, bakeable vacuum system
using a turbomolecular-pump backed by a mechanical pump to minimize hydrocarbon
contamination. Chambers (and other components) to be tested for outgassing are con-
nected to a manifold through all metal valves. After initial pumpdown of a chamber,
the roughing pump is isolated from the system and the outgassing flux is determined in
the measurement section on the left of the figure. The measurement section consists of
two sections separated by a calibrated orifice evacuated by an ion pump. Each section
is equipped with a residual gas analyzer (RGA), a spinning-rotor gauge (to provide an
NIST-traceable calibration for the RGA) and an ionization gauge. The outgassing flow of
a particular molecular species is determined by measuring the pressure difference between
the two sections with the RGAs. The relation between the gas flow and the differen-
tial pressure is known by numerical modeling and confirmed by calibration with standard
leaks of different gas species. A LNq trap is included in the measurement section to re-
duce the background of condensible gases (e.g., HoO) when measuring the outgassing of
a non-condensible gas (e.g., Hz). Controlled leaks are used periodically to maintain the
calibration of the RGA’s against the spinning-rotor gauges.

3. Test Apparatus and Procedure

Figure D-1 illustrates the apparatus used to measure outgassing from the test

chambers. A single roughing-pump/turbomolecular-pump set is used to separately
pump each of the test chambers through a manifold with appropriate valves. The
ion pump, measurement section and liquid-nitrogen-trap ensemble is used to obtain
independent measurements from each of the test chambers. Absolute gas flow mea-
surements for any gas constituent are obtained by monitoring the pressure gradient

across an orifice in the measurement section (see Figure D-1).

Outgassing of water vapor and hydrocarbons can be measured directly with

D-2



Oakite 33 detergent, 209 solution in hot (136-143 °F) deionized
Wwater, brushed on, let stand for 30 minutes, thep rinsed with hot
deionized water,

parison, the estimated outgassing rate for a
similar chamber Constructed with standard stainlegg steel [D~1] is also shown in the

inversely Proportional to time (for 6000 hours under vacuum), Water—vapor out-
gassing data for chamber number ] (uncleaned) is presented ip Figure D—3 along
with the prediction of the standard theory [D- ]. Similar trends were observed ip



HyoROGEN QuUTGASSING RATE

torr-L-s'-cm™
S
i
N
|

/Standard Stainless Steel

a Nﬁm
1013k Chambers
- ~ + #1
10714 - B . §§
© o #4
| | | | |
109 10! 102 10° 10* 10°

TiIME UNDER VAcuuM™, hours

Figure D-2 Hydrogen-outgassing rate versus time under vacuum for four test vacuum
chambers manufactured from low-hydrogen steel (obtained from J&L Specialty Prod-
ucts). These chambers were subjected to different cleaning procedures: uncleaned (1), hot
water /detergent washed (2), steam cleaned with detergent (3), and cold water/detergent
washed (4). The upper line is the expected degassing curve for standard stainless steel
based on a diffusion model.

5. Conclusions

Fabricating vacuum chambers and beam-tube sections from stainless steel pro-
cessed for low hydrogen content should result in acceptable outgassing rates for
hydrocarbons and hydrogen. Unbaked chambers made from type 304L stainless
steel processed for low hydrogen content have achieved hydrogen-outgassing rates
as low as 3 x 10™!% torr- L - s™! - cm™2. With the pumping system described in
Section IV.D, this would result in a partial pressure of hydrogen in the beam tubes
of approximately 5 x 107! torr.

Test data confirm that water-vapor outgassing will not be a problem for initial
interferometers; however, a mild bakeout is planned to reduce water-vapor pressure
to the goal for advanced interferometer operation.

Steam cleaning (a practical and low-cost method of removing surface contam-
ination) resulted in lower hydrocarbon outgassing than other cleaning methods
tested, with no measurable effect on water-outgassing rates.
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Figure D-3 Water-outgassing rate versus time under vacuum for a chamber fabricated
from low-hydrogen-content stainless steel. The lower curve is the measured outgassing
rate of an uncleaned chamber. The slope discontinuities are due to periods when the
chamber was closed for accumulation measurements. All four test chambers have similar
water-outgassing curves. The upper line is a prediction based on a standard model for
unbaked stainless-steel systems showing a 1/t dependence where t is the time under
vacuum.
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