

LIGO – Laser Interferometer Gravitationalwave Observatory—status of the detector

Jim and Dave Fest Princeton University March 15, 2003 Rainer Weiss (MIT) for the LIGO Scientific Collaboration

Dave did have his hand in it

Physics through the 1990s (Brinkman Physics Survey) Gravitation, Cosmology and Cosmic-Ray Physics

".....The National Science Foundation (NSF) has played an important role in fostering this work and is currently considering a major initiative – a Long-Baseline Gravitational-Wave Facility. We have studied this idea and enthusiastically endorse it, assuming that other ongoing work of high quality will not be adversely affected. We recommend that the NSF enhance its leadership in gravitation research by funding the Long-Baseline Facility, while continuing to support a vigorous program to search for gravitational waves with resonant bar detectors..."

David T. Wilkinson, Chairman

NAS Press 1986

LIGO

LIGO Scientific Collaboration Member Institutions

University of Adelaide ACIGA Australian National University ACIGA **Balearic Islands University** California State Dominguez Hills Caltech CACR Caltech LIGO Caltech Experimental Gravitation CEGG Caltech Theory CART University of Cardiff GEO Carleton College **Cornell University** Fermi National Laboratory University of Florida @ Gainesville **Glasgow University GEO** NASA-Goddard Spaceflight Center University of Hannover GEO Hobart - Williams University India-IUCAA IAP Nizhny Novgorod Iowa State University Joint Institute of Laboratory Astrophysics Salish Kootenai College

LIGO Livingston LIGOLA LIGO Hanford LIGOWA Lovola New Orleans Louisiana State University Louisiana Tech University MIT LIGO Max Planck (Garching) GEO Max Planck (Potsdam) GEO University of Michigan Moscow State University NAOJ - TAMA Northwestern University University of Oregon Pennsylvania State University Southeastern Louisiana University Southern University Stanford University Syracuse University University of Texas@Brownsville Washington State University@ Pullman University of Western Australia ACIGA University of Wisconsin@Milwaukee

LIGO Scientific Collaboration

THE RADIATION FIELD

Transverse Plane Wave Solutions with "Electric" and "Magnetic" Terms Geometric Interpretation

$$ds^{2} = g_{ij}dx^{i} dx^{j}$$

$$g_{ij} = \eta_{ij} + h_{ij} \quad \text{weak field}$$

$$\eta_{ij} = \begin{pmatrix} 1 & 0 \\ -1 & 0 \\ 0 & -1 & -1 \end{pmatrix} \quad \text{Minkowski Metric of Special Relativity}$$

Gravity Wave Propagating in the x_1 Direction

Plane Wave

.

Measurement challenge

• Needed technology development to measure:

 $h = \Delta L/L < 10^{-21}$ $\Delta L < 4 \times 10^{-18} \text{ meters}$

LIGO-G9900XX-00-M

FRINGE SENSING

LIGO Laboratory

LIGO

PENDULUM THERMAL NOISE

Parameter	Nominal Initial Interferometer
Arm length	4000 m
Laser type @wavelength	Nd:YAG $\lambda = 1064 \text{ nm}$
Input power at recycling cavity	6 W
Contrast defect 1-c	$< 3 \times 10^{-3}$
Mirror loss	< 1 x 10 ⁻⁴
Power recycling gain	30
Arm cavity storage time	880 µ sec
Cavity input mirror transmission	3 x 10 ⁻²
Mirror mass	10.7 kg
Mirror diameter	25 cm
Mirror internal Q	1 x 10 ⁶
Pendulum Q (structure damping)	1 x 10 ⁵
Pendulum period (single)	1 sec
Seismic isolation system	T(100Hz) = -110dB

Table 1: Initial detector parameters

Interferometers

international network

Simultaneously detect signal (within msec)

LIGO Observatory Facilities

LIGO Hanford Observatory [LHO]

26 km north of Richland, WA

2 km + 4 km interferometers in same vacuum envelope

LIGO Livingston Observatory [LLO]

42 km east of Baton Rouge, LA Single 4 km interferometer

The LIGO Laboratory Sites

Interferometers are aligned along the great circle connecting the sites

Hanford, WA

LIGO

Beam Tubes and Enclosures

Precast concrete enclosure

- Beam Tube
 - 1.2m diam; 3 mm stainless
 - special low-hydrogen steel process
 - 65 ft spiral weld sections
 - 50 km of weld (NO LEAKS!)
 - In situ 160 C bakeout
 - 20,000 m³ @ 10⁻⁸ to 10⁻⁹ torr

Beam Tube

bakeout

- I = 2000 amps for ~ 1 week
- no leaks !!
- final vacuum at level where not limiting noise, even for future detectors

LIGO

vacuum equipment

Vacuum Chambers

Vibration Isolation Systems

- » Reduce in-band seismic motion by 4 6 orders of magnitude
- » Compensate for microseism at 0.15 Hz by a factor of ten
- » Compensate (partially) for Earth tides

Seismic Isolation

Springs and Masses

Seismic Isolation

performance

Seismic Isolation

suspension system

- support structure is welded tubular stainless steel
- suspension wire is 0.31 mm diameter steel music wire

 fundamental violin mode frequency of 340 Hz

suspension assembly for a core optic

Core Optics

fused silica

Surface uniformity < 1 nm rms

- Scatter < 50 ppm
- Absorption < 2 ppm
- ROC matched < 3%</p>
- Internal mode Q's > 2 x 10⁶

		THE ACTE FIRTH
10.00 March 10		Note: - Cref, av_19-65,0 dec
N 5 (0	- 18 - 18	Zemike Coefficients zer Zenike 301:00004 w zer
		Zemike, 8 1 : 0.01393wv Zemike, 8 3 : 0.01984wv Zemike, 8 3 : 0.00431wv Zemike, 8 3 : 0.00431wv Zemike, 8 3 : 0.00164wv Zemike, 8 3 : 0.00164wv Zemike
Date: 12/04/1998 Time: 08:58:13 Wavelength: 1.084 um Pupil: 100.0% PV: 10.1607 nm RMMS: 1.2981 nm Rad df curv: 292.37 km	X Center: 288.00 Y Center: 239.50 Radius: 275.45 pix Terms Tilt Power Astig Filtenz: None Madks	Seidel Aberrations (8 Ter Coeff (per radius) Tit D0209wv Power 0.0086wv 0.002 Focus 0.0127wv Astig 0.0026wv 0.001 Coma 0.0059wv 0.002 Sa3 -0.0059wv 0.002

e: CSIRO meas Note: interpolated to LIGO grid Zernike Coefficients ze Zernike_3[3]: 0.00210wv Zer Zer 630 Zer Zemike_8[1]: 0.00077 wv zer 0.10 Zemike_8[2]: -0.00164 wv Zer Zer Zemike_8(3): 0.00210 wv 7-Zemike_8[4]: 0.00034 wv zer Zemike_8[5]: +0.00021 wv Zer Zer Zemike_8(6): 0.00033 wv zer Zemike_8[7]: 0.00124 wv Zer Zerniko_8(8): -0.00143 w/ Zer Seidel Aberrations (8 Ter X Center: 284.00 Date: 11/16/1998 Coeff (per radius) Time: 16:39.59 Y Center: 240.00 TIE 0.0041 wv Wavelength: 1.064 um Radius: 267.72 pix Power 0.0042 wv 0.001 Pupil: 100.0 % Terms: Tilt Power Astig Focus 0.0124 wv PV: 6.4471 nm Filters: None 0.000 0.0008 wv Astig RMS: 1.1005 nm Masks: 3.0 Sigma Mask 0.001 Coma 0.0038 wv Rad of curv: 570.70 km 0.003 Sa3 -0.0086 wv

Caltech data

CSIRO data

Core Optics

Suspension

Core Optics Installation and Alignment

LIGO Prestabilized Laser

Lightwave Electronics MOPA

Feedback Control Systems

example: cavity length sensing & control topology

•Array of sensors detects mirror separations, angles

•Signal processing derives stabilizing forces for each mirror, filters noise

•5 main length loops shown;
total ~ 25 degrees of freedom

•Operating points held to about 0.001 Å, .01 µrad RMS

•Typ. loop bandwidths from ~ few Hz (angles) to > 10 kHz (laser wavelength)

