#### **The Big Bang Observer (BBO)**



SEUS/OS Nov 8, 2004-1



# **Design Goal: Big Bang Observer**

• Direct detection of gravitational waves due to quantum fluctuations in the pre-inflation universe, to

 $\Omega_{\rm gw}(f) < 10^{-17}$ .

Consequences:

- $f \sim 0.5$ Hz to avoid astrophysical foregrounds.
- Must correlate collocated pair of interferometers to reach desired  $\Omega_{_{gw}}$
- Must measure and subtract astrophysical foreground sources from correlation.
- To do this, must get subarcsecond positions of short-lived sources.
- Requires multiple interferometers separated by ~1AU.



SEUS/OS Nov 8, 2004-4

#### Instrument parameters: BBO vs LISA

|                                      | BBO                                 | LISA                           |
|--------------------------------------|-------------------------------------|--------------------------------|
| Arm length $L$ (km)                  | $5 \times 10^4$                     | $5 	imes 10^6$                 |
| Laser Power $L$ (W)                  | 300                                 | 1                              |
| Laser $\lambda$ (nm)                 | 355                                 | 1065                           |
| Mirror diam $D$ (m)                  | 2.5                                 | 0.3                            |
| Accel. noise (m $s^{-2}Hz^{-1/2}$ )  | $3 \times 10^{-17}$ at 0.1 Hz       | $3 \times 10^{-15}$ at 1mHz    |
| Proof Mass $M$ (kg)                  | $\sim 100$                          | 1.6                            |
| Interferometer op                    | dark fringe                         | fringe counting                |
| Proof mass accel                     | $3 \times 10^{-10} { m m \ s^{-2}}$ | 0                              |
| $c/(2\pi L)$ (Hz)                    | 1                                   | 0.01                           |
| Position shot noise (m $Hz^{-1/2}$ ) | $1.5 \times 10^{-17}$               | $1.1 	imes 10^{-11}$           |
| Pointing stability req               | $10^{-12} \text{rad Hz}^{-1/2}$     | $10^{-8} \text{rad Hz}^{-1/2}$ |

BBO Stage 1: 3 Spacecraft, no solar plasma correction. Goal: determine nature and number of sources in 0.1-1Hz Design optimal arm length for Stage 2 correlated pair-us/os -New

50,000km



Resolvable into sources above ~0.1Hz!

SEUS/OS Nov 8, 2004-7

## **BBO Stage 1: Sources**

- 1)Last year of every merging NS-NS, NS-BH, BH-BH of stellar mass at z<8. ~1 arcmin positions. Months advance notice for gamma-ray bursts, LIGO.
- 2)<1% Precision luminosity distances to (1):  $\sim 10^4$ -10<sup>5</sup> sources
- 3)Measure dz/dt in galactic sources from stretching of chirp, gives H(z). Dark energy probe.
- 4)Detect acceleration in globular cluster sources: can distinguish them from the galactic ones.
- 5)All mergers of intermediate mass BH at any z.
- 6)Type Ia supernova (rapidly rotating WD explosion) at D<1Mpc (1/25 yrs).
- 7)1Hz pulsars with nonaxisymmetric internal B>3x10<sup>14</sup>G, r<1kpc.
- 8) Cosmic/Superstrings over entire allowed range  $G\mu/c^2 > 10^{-14}$

#### **Stellar and Intermediate Mass BH mergers**



- Advanced LIGO local event rates will predict for BBO: Adv LIGO 10M<sub>o</sub>BH 50,000/y
   Adv LIGO NS-NS 60/y
   Adv LIGO NS-NS 4000/y
- Need BBO to study evolution at z>1. Get 500x more events/y (NS-NS), 1-10x more/y (BH)
- BBO stage 1: measure rates and redshift evolution; determines optimal arm length/design for BBO stage 2
- BBO stage 2 will give <1 arcsec positions.

# **Gravitational** waves from Cosmic Strings



FIG. 7. String evolution at the cusp for  $L \approx 17$ . The core of the string in the field theory simulation is shown light, and the Nambu-Goto prediction dark. The "fog" shows areas of high energy density. The string core has collapsed away from the point of the cusp, leaving the energy behind in radiation.

Olum & Blanco-Pillado Phys.Rev. D60 (1999) 023503 \*See Polchinski, hep-th/0312067, hepth/0405229: characteristic of braneworlds with warp. In models w/ brane inflation that reproduce CMB,  $10^{-12} < G\mu/c^2 < 10^{-6}$ 



FIG. 9. Close-up view of the core of the string and the radiation after the cusp evaporation. The cloud of radiated energy travels in an expanding shell.



to  $G\mu/c^2 < 10^{-14}$ SEUS/OS Nov 8, 2004-10

# **Design Goal: Big Bang Observer**

• Direct detection of gravitational waves due to quantum fluctuations in the pre-inflation universe, to

 $\Omega_{\rm gw}(f) < 10^{-17}$ .

Consequences:

- *f*~ 0.5Hz to avoid astrophysical foregrounds.
- Must correlate collocated pair of interferometers to reach desired  $\Omega_{_{gw}}$
- Must measure and subtract astrophysical foreground sources from correlation.
- To do this, must get subarcsecond positions of short-lived sources.
- Requires multiple interferometers separated by ~1AU.

#### **BBO stage 2: orbit**



 Overlapping pair for correlation to seek isotropic inflation background

Two independent interferometers 1,2 separated by  $1/(2\pi)$ gravitational wavelengths. If aligned, are sensitive to same sources & polarization. Then gravitational wave signals  $s_1(t)$  and  $s_2(t)$  are correlated,  $s_1(t) \simeq s_2(t)$ . In single interferometer, signal is undetectable if much less than measurement noise  $\langle s_i^2 \rangle \ll \langle n_i^2 \rangle$ . But if all sources of measurement noise  $n_1(t)$  and  $n_2(t)$  are uncorrelated,

$$\int_0^T (s_1 + n_1)(s_2 + n_2) dt \simeq \langle s_1^2 \rangle T$$

while the standard deviation of the noise contribution to the integral at frequency f is  $\sim (\langle n_1^2 n_2^2 \rangle fT)^{1/2}$ .

So in long integration, can detect signal with

$$\frac{s^2}{n^2} > \frac{1}{(fT)^{1/2}}$$

So the sensitivity to  $\Omega_{gw} \propto s^2$  scales as  $(fT)^{-1/2}$ .

More precisely

$$SNR^2 = \frac{81H_0^4}{800\pi^4} T \int_0^\infty \frac{|\gamma(f)|^2 \Omega_{gw}^2(f)}{f^6 S_{n1}(f) S_{n2}(f)} df$$

where  $\gamma(f)$  (~ 1 for  $f < f_* = c/(2L\pi) = 1$ Hz, ~ 0 for  $f > f_*$ ; for detailed form see Cornish & Larson 2001, Class Quant Grav 18, 3473) is the overlap-reduction function for a pair of equilateral-triangle interferometers in star-of-David configuration.

For two correlated BBO, this gives

$$\Omega_{gw} = 1.1 \times 10^{-17} T_{yr}^{-1/2} (\text{SNR})$$

with most of the contribution coming from 0.1-0.5 Hz.

#### **Correlated noise?**

- Correlation only works if the noises in the 2 interferometers are uncorrelated.
- refractive index fluctuations in turbulent solar wind plasma appear as correlated optical-path variations, and are > correlated sensitivity. Remove by adding radio interferometry to measure plasma.
- Appears feasible to mitigate other sources of correlated noise:
  - Correlated charging of proof mass due to solar wind's modulation of cosmic ray flux.
  - Magnetic remnance in proof mass due to correlated time-varying magnetic field gradients in solar wind.
  - Thermal and solar radiation pressure fluctuations (can isolate through spacecraft)

## **Design Goal: Big Bang Observer**

• Direct detection of gravitational waves due to quantum fluctuations in the pre-inflation universe, to

 $\Omega_{\rm gw}(f) < 10^{-17}$ .

Consequences:

- $f \sim 0.5$ Hz to avoid astrophysical foregrounds.
- Must correlate collocated pair of interferometers to reach desired  $\Omega_{_{gw}}$
- Must measure and subtract astrophysical foreground sources from correlation.
- To do this, must get subarcsecond positions of short-lived sources.
- Requires multiple interferometers separated by ~1AU.

#### **BBO stage 2: orbit**



 Separated triad to triangulate accurate sky positions for short-lived sources. All Stage 1 sources now get <1 arcsec positions.

#### NASA vision BBO burst sensitivity curve Can remove foreground sources to reach correlated sensitivity



Upper blue: Background from BH merger rate

Middle blue: Background From High NSNS Merger rate

Lower blue: Background from Standard NSNS Merger rate.

Open circles: Coherent SNR

Closed: Instantaneous SNR (t~1/f).

SEUS/OS Nov 8, 2004-18

#### **Astrophysics with Stage 2 BBO**

- subarcsecond positions of burst sources (e.g. cosmic strings, type Ia and type II supernovae...): electromagnetic followup.
- subarcsecond positions of all merging NS, BH, IMBH:
  - are they in star formation regions?
  - in clusters, halos, galactic nuclei? (IMBH made by PopIII, or merging in dense star clusters [cf Miller, Rasio, Morris, Portegies-Zwart...])
  - neutron star recoil, gravitational wave recoil?



SEUS/OS Nov 8, 2004-20

Universe today ~  $2ct \sim 10^{28}$ cm across. At  $t \sim 10^{-37}$ s ( $kT \sim 10^{16}$ GeV), today's universe was ~ 10cm across. Yet horizon size was  $2ct \sim 10^{-26}$ cm. Causality, monopole problem.

Inflation: false vacuum

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi}{3}G\rho_V = \text{const}$$

So  $a \propto \exp(\sqrt{G\rho_V}t)$ .

Need to expand  $10^{-26}$  cm to at least 10cm, i.e. factor greater than  $10^{27} = e^{62}$ .

Single scalar field slow roll inflation:

$$H^{2} = \frac{8\pi}{3m_{pl}^{2}} [V(\phi) + \dot{\phi}^{2}/2]$$

$$\dot{\phi} + 3H\dot{\phi} = -V'(\phi)$$

Number of e-foldings

$$N = \ln(a_f/a_i) = \int_{t_i}^{t_e} H \frac{dt}{d\phi} d\phi = \frac{8\pi}{m_{pl}^2} \int_{\phi_e}^{\phi_i} \frac{V}{V'} d\phi$$

SEUS/OS Nov 8, 2004-21

Variance of density fluctuations S and grav waves T in CMB quadrupole

$$S \sim \frac{1}{m_{pl}^6} \frac{V^3}{(V')^2}$$
 (1)

$$T \sim V/M_p^4 \propto \Omega_{gw}(f)$$
 (2)

Consistency condition: same roll down V that determines S also sets difference in T as function of gravitational wavelength (horizon size when leaves horizon):

$$d\ln\Omega_{gw}/d\ln k = -\frac{1}{8}\frac{T}{S} \ll 1$$

With  $\Omega_{gw}$  (CMB B-mode),  $\Omega_{gw}$  (1Hz), CMB scalar, Can do consistency check of single-scalar slow-roll inflation.

Alternative inflation models (hybrid, natural, braneworlds, etc), can have quite different relations (including blue spectra, undetectably low  $\Omega_{gw}$ , etc).





SEUS/OS Nov 8, 2004-24

#### **BBO: the Big Bang Observer**

#### NASA-funded vision mission (launch ~2025?) under study.

- Stage 1: 3 spacecraft. Stage 2: 12 spacecraft in 3 groups (3,3,2x3). Correlate outputs of 2x3.
- $5 \times 10^4$  km = b arms (1/100 LISA)
- 2x300W lasers/sc,  $0.35\mu$ m= $\lambda$  (freq tripled (70%) diode pumped NdYAG or fiber laser (30%): 2.8kWe power, 2.3kWth dissipated.
  - plus microwave or  $1\mu$ m lasers to correct for phase fluctuations due to solar wind plasma.
- 2.5m =d mirrors (~ HST). Fresnel N= $(d/2)^2/(b\lambda)=0.09$
- 0.01 LISA acceleration noise (scaled as white from 0.001Hz to 0.1Hz) at 0.1-3 Hz. `Easy'?
- Distant spacecraft receives 18W, requires large proof mass to avoid heating.
- Probably stationkeep to dark fringe rather than free flying like LISA. Proof mass acceleration to keep on fringe  $\sim 3 \times 10^{-10}$  m s<sup>-2.</sup> (apply out of band, like LIGO!) SEUS/OS Nov 8, 2004-25

- Each spacecraft payload contains;
  - One test mass (hexagonal cross-section)
    - Optical position readout and forcing for drag-free control
  - Two telescopes 2.5 m diameter
  - Two lasers (wavelength 355 nm, power ~ 300W)
  - Two radio antennas for plasma calibration
    - Measure apparent change in range between spacecraft
    - 2.5 m diameter, 200 W RF power (each frequency)
  - Micro-propulsion system
    - Counter force of sunlight on spacecraft

$$\sqrt{S_{\chi}} \approx 1.5 \times 10^{-17} \left(\frac{\lambda}{355 nm}\right)^{3/2} \left(\frac{0.4 \times 300 W}{\varepsilon P_L}\right)^{1/2} \left(\frac{L}{5 \times 10^7 m}\right) \left(\frac{2.5 m}{D}\right)^2 m / \sqrt{Hz}$$

- Mirror diameter chosen to fit two within 5 m fairing
- Wavelength for Nd:YAG laser with frequency tripling
- Efficiency of 0.4 compatible with UV photodiodes
  - Assuming operation on dark fringe
  - May require development of beam splitters and modulators
- 300 W of laser power based on lab demonstrations at 1064 nm
  - Frequency tripling to that power level represents extrapolation

# **Orbit Considerations**

- Orbits are chosen so that individual elliptical orbits about sun form a triangle with nearly constant lengths
- Test mass orbits are controlled (at low frequencies) to force equality of arms lengths
  - Interferometer kept on dark fringe
  - Single test mass with 60 degree facets
  - Pointing change smaller than beamwidth
- Control acceleration small
  - Due to shorter arm lengths
  - <1 nm/s<sup>2</sup> required
    - which is allowed uncertainty for LPF
    - Need to investigate for BBO





BBO-3

# **Possible Spacecraft Configuration**

- Configuration may be similar to LISA
  - Desirable to launch three spacecraft in single 5 m fairing (4.57 m diameter)
- Two telescopes in cylindrical section - 2.5 m, f/1.4
- Radio calibration system and spacecraft support equipment in second cylindrical section
  - 2.5 m antenna for s/c-s/c ranging
- Deployed solar arrays
  - Power for laser
  - Xe ion engine for orbit insertion
    - Cooling system may be challenge



# **Telescope Configuration**



BBO-5



BBO-6

- 4 primary signals from interferometer
  - One used to lock lasers together
  - One used to control position of test mass
    - In direction bisecting directions to other two spacecraft
  - One used to control position of spacecraft
    - In direction bisecting directions to other two spacecraft
  - One used to lock laser
    - To arm length (Master)
    - To laser from Master (Slaves)
- All kept on dark fringe
- Transverse positions signals not shown;
  - Interferometer pointing signals
  - Auxiliary test mass readout interfereomters

# **Radio Link Budget**

|                   | A                        | В                            | С         | D        |
|-------------------|--------------------------|------------------------------|-----------|----------|
| 1                 | 1 Transmitter Parameters |                              |           |          |
| 2                 |                          | RF Power, dBm                | 53.01     |          |
| 3                 |                          | (Watts)                      |           | 200.00   |
| 4                 |                          | Transmit Circuit Loss, dB    | 0.00      |          |
| 5                 |                          | Antenna Circuit Loss, dB     | 0.00      |          |
| 6                 |                          | Antenna Gain, dBi            | 43.77     |          |
| 7                 |                          | Antenna diameter, m          |           | 2.50     |
| 8                 |                          | Wavelength, cm               |           | 3.60     |
| 9                 |                          | Efficiency                   |           | 0.50     |
| 10                |                          | Pointing Error, dB           | 0.00      |          |
| 11                | Path                     | Parameters:                  |           |          |
| 12                |                          | Space Loss, dB               | -204.84   |          |
| 13                |                          | Range, km                    |           | 50000.00 |
| 14                | Rece                     | eiver Parameters:            |           |          |
| 15                |                          | Polarization Loss, dB        | 0.00      |          |
| 16                |                          | Antenna Gain, dBi            | 43.77     |          |
| 17                |                          | Antenna diameter, m          |           | 2.50     |
| 18                |                          | Efficiency                   |           | 0.50     |
| 19                |                          | Noise Spectral Dens, dBm/Hz  | -173.83   |          |
| 20                |                          | System Temp, K               |           | 300.00   |
| 21 Power Summary: |                          |                              |           |          |
| 22                |                          | Received Power, dBm          | -64.30    |          |
| 23                |                          | Received Pt/N0, dB-Hz        | 109.53    |          |
| 24                |                          | SNRV(1-sec)                  | 423835.40 |          |
| 25                |                          | Range noise, m/sqrt(Hz)      | 8.49E-08  |          |
| 26                |                          | Range noise @ UV, m/sqrt(Hz) | 8.21E-18  |          |

## **Power Budget**

| effective laser power (W)  | 120   | each arm       |
|----------------------------|-------|----------------|
| optical efficiency         | 0.4   |                |
| laser power (W)            | 600   | for both arms  |
| tripling efficiency        | 0.7   |                |
| pump efficiency            | 0.3   |                |
| laser electrical power (W) | 2857  |                |
| x-radio system power (W)   | 400   | 50% efficiency |
| ku-radio power (W)         | 600   | 33% efficiency |
| electronics power (W)      | 200   |                |
| micro-prop power (W)       | 100   |                |
| spacecraft power (W)       | 1000  |                |
| Total                      | 5879  |                |
| Margin                     | 2000  |                |
| array power (W)            | 7,879 | 26%            |
| solar panel efficiency     | 0.28  |                |
| array area needed (m^2)    | 21    |                |

# **Micro Propulsion System**

| array area (m^2)             | 21  |
|------------------------------|-----|
| force on spacecraft (uN)     | 142 |
| drive thrusters (uN)         | 200 |
| counter thrust (uN)          | 40  |
| total thrust (uN)            | 241 |
| Total w redundancy (6/4)(uN) | 361 |
|                              |     |
| specific impulse (s)         | 500 |
| mission duration (years)     | 5   |
| propellant mass (kg)         | 12  |
| propellant tank mass (kg)    | 2   |
| thruster mass/cluster (kg)   | 15  |
| #clusters                    | 6   |
| Thruster mass total (kg)     | 90  |
| Total prop mass (kg)         | 104 |

- Develop acceleration noise budget
  - For hexagonal test mass
- Complete optical train notional design
  - Define modulation scheme
  - Include test mass sensing in transverse degrees of freedom
  - Identify requirements for optical elements
- Finish preparations for Team -X exercise
  - Complete instrument mass budget
    - Will be dominated by structure for telescopes
  - Define telemetry requirements
  - Study cooling concept
    - Radiation from 'bottom' appears feasible