
Reanalysis of average pressure in the beamtube as a function of water injected at the ends
Rainer Weiss October 30, 2008

Abstract The average water pressure in the beam tubes as a function of water injected at the ends
is reanalysed. The initial estimates allowed no more than 400 torr liters of water injected at each
end of a 2km beamtube module before compromising the goal average pressure of torr
with only end pumping and approximately a factor of 10 more injected water with distributed
pumping. The new estimates do not give a fixed amount of water but rather provide a relation
between the exposure time to water pressure and the system’s recovery time to the goal pressure.
The initial estimates assumed that all the water injected into the tube would adsorb on the walls
and did not account for the continued reduction in water outgassing rate with time. The new esti-
mates take into account the adsorption and reemision dynamics. The principal result is that most
of the water injected into the tube is collected by the cryo pumps before adsorption. Furthermore,
the gas that is adsorbed on the tube walls will be outgassed by the walls with a characteristic 1/t
dependence scaled by the exposure time.

The note reviews the initial calculations and presents the results of the new calculations. The cal-
culations are made with a statistical mechanics and surface physics program that was developed
to understand the beamtube bakeout in the early 1990’s. The program estimates the surface load-
ing of water over the pumping and thermal history of the beamtube and provides an outgassing
rate. The outgassing rate is used to estimate the pressure knowing the pumping strategy. The pro-
gram is based on the Dubinin-Radushkevich surface adsorption theory which assumes a skewed
Gaussian distribution of surface sites with adsorption energy. The surface dynamics uses the
Langmuir adsorption theory with a molecular surface adsorption potential having both an attrac-
tive and repulsive term as hypothesized by Roald Hoffman. The theories and the FORTRAN pro-
gram used in the calculations are provided in an appendix to this note.

Measurements that could be contemplated to establish the validity of the model and parameters
are discussed briefly. Infra-red spectroscopic absorption measurement are considered as well as a
method using a residual gas analyser placed at an appropriate position in the beam tube. Both
methods would involve some work and preparation and cannot be approached casually.

Introduction During standard operations of opening and closing the vacuum system both in the
LVEA and at the ends, we have now introduced somewhat more than 400 torr liters of water into
each end of all the 2km modules of the beam tube. The increased installation and commissioning
activity in preparing Enhanced LIGO and the anticipated activity in installation and commission-
ing Advanced LIGO make it urgent to establish if the original estimate is indeed correct and ,if
necessary, to devise a strategy to reduce the average water pressure in the beamtubes when the
improved interferometer sensitivity requires it.

The goal average pressure The goal pressure specification was set by the constraint that optical
phase noise from forward scattering by molecules in the 4 km beam tube path not exceed 1/2 the
standard quantum limit for a 1 ton test mass at 100 Hz. This corresponds to a strain noise of 1.5 x
10-25 / at 100 Hz .

10 10–

Hz

The relation between a uniform outgassing rate and the average pressure in the tube is given by

 eq 1

where p, the pressure, is in torr, J, the uniform surface outgassing rate of water in torr cc/cm2 , a,
the tube radius in cm, L, the tube length in cm, n, the number of pumps on the tube, F, the pump-
ing speed of a pump in cc/sec and, v, is the molecular speed in cm/sec. In our beam tubes the
pumping port spacing is large enough so that the second term in eq 1 dominates. For water, sim-
ply increasing the pumping speed of the pumps is not an economical or efficient strategy. The
pressure distribution in the tube is scalloped with a maximum pressure midway between pumps.

The goal constituent average pressures and outgassing rates associated with two pumping strate-
gies are given in Table 1.

The model parameters used in both the original and revised estimates are given in Table 2

Table 1: Goal average pressure and outgassing rates in the beamtube @ 300K

constituent average pressure end pump outgassing rate nine pump/module outgassing rate

torr torr liters/cm2sec torr liters/cm2sec

amu 18 (H2O) 1 x 10-10 2 x 10-15 2 x 10-14

amu 100 6 x 10-13 5 x 10-18 4 x 10-16

amu 300 5 x 10-14 2 x 10-19 1 x 10-17

amu 600 8 x 10-15 3 x 10-20 2 x 10-18

Table 2: Model parameters for bakeout and operations

param value param value

Lbake module lgth 2 km Lop lgth of arm 4 km

a radius of tube 62 cm To peak DR distribution 1 x 104 K

Tambient ambient T 296 K R repulsive term surface potential 0.7

nbake # pumps bake 7 nop number of pumps in operation 2

Fbake bk pump spd 176 l/s Fop pumpspeed 1 x 105 l/s

Tbake max max bake T 425 K το molecular oscillation period 1 x 10-12 sec

tbake length of bake 4 weeks σinit initial water load 150 mlayers

σend bake end bake water load ~ 6 mlayers

α accomodation coefficient 0.5

p〈 〉L J 2πaL
nF

------------- L2

4va2 n-1()2
---------------------------+=

The model surface parameters given in Table 2 were first determined during the test beamtube
bakeout at the Chicago Bridge and Iron Co and iterated during the bakeout of the 8 tube modules
at Hanford and Livingston. The model was fit to the pressure vs temperature and time history. The
total water load (σinit) and RD peak adsorption energy (To) are uniquely fit by the bakeout data.
The repulsive potential term (R) and the accomodation coefficient (α) are strongly correlated and
both affect the estimate of the ultimate surface load (σend bake) at the end of the bake. In the
parameter estimates the accomodation coefficient was held at 0.5, a typical literature value , while
R was allowed to vary.

Figure 1 The water outgassing data and model (dashed lines) of a trial bakeout of a 40 meter full scale LIGO beam-
tube at Chicago Bridge and Iron Co. The model used the same theory and similar parameters to those listed in the
Table 2.

Original estimate The original estimate assumed, that after the beamtube bake, water introduced
at the ends would be uniformaly distributed in the tubes and all the new water would adsorb on
the walls at sites made available by the bake. The relation between the water introduced and the
increase in the average pressure in the tube was determined by calculating the change in outgas-
sing rate with surface water loading using the site occupation probabilities after the bakout. The
program was run repeatedly with slightly different initial conditions to explore the change in final
outgassing rate at 296K as a function of small changes in the final surface loading. The derivative
of final outgassing rate with final surface loading was obtained at 296K. Armed with the deriva-
tive, the last step in the estimate was to calculate the average pressure using eq 1 and then, lastly,
calculating the amount of water injected at the ends on the assumption that all the injected water is
uniformly adsorbed on the surface of the tube - a conservative assumption. Furthermore, in this
approach, it is assumed that the water injected into the tube after the bake would occupy similar
adsorption sites as that introduced prior or during the bake - a wrong assumption which it turns
out is optimistic.

Table 3 provides the results that were used to establish the water injection limits in the memo
LIGOT990000 written on 08/22/99 “Water Load on the Beam Tubes from Detector Components”

that set 400 torr liters/module end of injected water as the limit before compromising the goal
average pressure.

The new analysis The reanalysis of the beam tube water pressure as a function of water load
includes the time and spatially varying surface load in the same surface model as that used to esti-
mate the molecular dynamics of the bakeout. The new analysis includes the non-uniform distribu-
tion of the adsorbed water and the molecular dynamics at the surface with the surface parameters
determined by the bake. The water is injected into the beamtube as a beam transmitted by the
cryopumps at the beamtube ends. The water molecules are no longer assumed to adsorb on con-
tact but rather the probability of adsorption using the detailed balance techniques in the bake pro-
gram are followed. The water pumping by the liquid nitrogen traps at the beam tube ends is
included in the calculation. This approach qualitatively changes the way the estimate is made.

By running the detailed balance program, one finds that the relevant parameters are the water
pressure at the entrance to the cryopump. The pressure distribution in the beamtube is determined
by the beaming through the trap transmission and the standard diffusive free molecular flow to the
cryopumps. In the low pressure regimes encountered in the apparatus, the pumping time constants
are shorter than the adsorption times so that to first order the pressure distribution is determined
by standard pumping calculations neglecting the surface adsorption. The equilibrium pressure dis-
tribution in the tube determines the adsorption rates. The emission and adsorption times for the
adsorption sites depend on the activation energy and on the probability that a site is occupied.
The adsorbing sites take exponentially longer to both emit and adsorb as a function of the adsorp-
tion energy. After the bake all sites at short emission and adsorption times are empty. As a conse-
quence, the longer the surface is exposed to the gas the more gas is adsorbed and at progressively
higher adsorption energies. Should the gas be removed in the tube, the surface will outgas with a
1/t dependence scaled by the exposure time. A simple algorithm at the end of this document using
this description of the process provides results close to those derived from the computer program.

Table 3: Model results: increase in outgassing rate with water injected into the baked beam tube

injected water surface load water outgassing rate @ 300K

torr liters monolayers torr liters/sec cm2

0 6.4138 4 x 10-17

25 6.4233 2 x 10-16

225 6.50 1.3 x 10-15

485 6.60 2.6 x 10-15

1500 7.0 8.1 x 10-15

Figure 2 The site occupation probability after the 1 month bake at 423K. This probability distribution is the starting
point for the new estimate. As reference, the model assumes that the occupation probability is 1 for all sites before
any pumping on the surface. The activation temperature is the binding energy for water molecules divided by Boltz
mann’s constant. The two curves indicate limits for the module bakes which had slightly different bake times and
temperatures

.

Figure 3 The DR molecular surface distribution as a function of activation energy before pumping and after the 423
K bakeout. The fully loaded surface holds 150 monolayers and 6 tightly bound monolayers after the bake. The emis-
sion time of an adsorption site is plotted as a function of the adsorption energy. The adsorption energies that influence
the outgassing at room temperature lie between 10000 and 15000 K.

With Figures 2 and 3 at hand it is worth evaluating several of the time scales associated with the
pumping and surface dynamics. The average time for an occupied site to emit a water molecule is

given by . With Tbind = 18000K, the binding energy associated with the transis-
tion between unoccupied and occupied sites at the end of the bake and a surface temperature of

emission time at 296K

150 monolayers
all sites occupied

6 monolayers
after 1 month at 423K

τemit τ0e
Tbind

T

=

423K, the value during the bake; the emission time is close to 1 month. The duration of the bake-
out. After the bake the surface temperature is reduced to 296K and these sites are frozen out of the
dynamics with emission times of millions of years. The pumping time constant associated with
tube sections in the middle of the beamtube is roughly (dealt with correctly in the computer pro-

gram) , a few hours for water at room temperature.

 Figure 4 Adsorption times at 296K for different pressures at the surface vs site activation energy. The emission
time is the same as in Figure 3 .
The adsorption time for gas above the surface to occupy a site ,varies as

where σinit is the initial surface loading expressed in molecules per cm2 (150 monolayers corre-
sponds to 1.5 x 1017 molecules/cm2) and ρ is the pressure expressed in molecules per cm3 (10-8
torr is equivalent to 3 x 108 molecules per cm3 at 300K) . The adsorption time is inversely pro-
portional to the pressure above the surface. Figure 4 shows the adsorption time as a function of
the adsorption energy for a variety of pressures above the surface. In the pressure and pumping
regimes we encounter in the apparatus (p < 10-5 torr), the adsorption times are longer than both
the emission times for a site and longer than the pumping time. Under these circumstances the
pressure distribution in the tube is close to being determined by standard free molecular diffusion
in equilibrium with the pumps without regard to the adsorption. There is adsorption, the change in
the probability of site occupancy varies as

τpump
L2

4 a v
-----------∼

emission time at 296K

adsorption time at 296K 1e-5 torr

1.0e-6

1.0e-7

1.0e-8

1.0e-9

alpha = 0.5 R = 0.7

τads
4σinit

αρv 1
1 R–()Tbind

T
------------------------------+ e

1 R–()Tbind

T
-----------------------------–

--=

dP
dt
------ 1

τads

τads τemit+()
τadsτemit()

------------------------------P–∼

Figure 5 The solid angle subtended by the actual tube sections at the entrance to the cryopump. The solid angle deter-
mines the amount of beamed water hitting each 18meter section of the tube. The beaming is incorporated into the
computer program.

The water injected into the tube is transmitted as a beam through the trap. The amount of water
hitting a section of the tube is

where v is the molecular velocity, A the area of the trap entrance , ρ the molecular density at the
entrance, and ΔΩsection the solid angle subtended by the tube section. The section is determined
by the finite element size in the computer program. Figure 6 shows the pressure distribution in
the tube with this beaming.

Figure 6 The pressure distribution in the beamtube for cryo pumping at both ends with a water pressure of 10-8 torr at
the entry to the cryopump at the LVEA. The water is transmitted by the cryotrap and is beamed down the tube.. The
curves are plotted for two different pumping speeds at the ends. The goal average pressure of less than 10-10 torr is
satisfied with the existing cryopumps (105 liters/sec) if both ends have water injection at pressure less or equal to
10-8 torr.

Assume: 10 meters from trap to begin of beamtube
18 meter long beamtube sections

Q·
ΔΩsection

4π
---------------------ρvAtrap entrance=

1.0x10^4 liters/sec at ends

1.0x10^5 liters/sec at ends

<p> = 1.2 x 10^-10 torr

<p> = 5.0 x 10^-11 torr

Beamtube divided into 888 sections
Water at entrance to LVEA trap only
NO adsorption on the walls
Result from btwaterdistribution.for

The finite difference program that generated Figure 6 (btwaterdistribution2a.for) is included in
the Appendix. The method is to divide the tube into 888 finite element sections and carryout free
molecular flow between them. The pumps are placed at the ends and the beaming through the cry-
otrap takes place at one end.

The same finite difference program is adapted to the surface dynamics using the DR adsorption
state distribution and the Langmuir adsorption theory (btwaterdistsurf2b.for) with the Roald Hoff-
man adsorption potential. A relevent result from this program is shown in Figure 7 which plots
the average water pressure along the beamtube as a function time for a range of pressures at the
trap input. The configuration is again two cryopumps, one at each end of the tube, and beaming of
the water from one end. The pressure at the cryopump entrance is indicated in the figure running
in decades from 10-6 to 10-9 torr. Curves are drawn for both the case with surface adsorption and
without. At 1000 minutes the average pressure for all cases has come to steady state. At this time
the water pressure at the input to the cryotrap is turned off. The curves without surface adsorption
all drop exponentially toward lower pressure from that time. The curves that include adsorption
follow the prior curves for the higher injection pressures but then show a typical desorption curve
varying as 1/t after the water injection has been turned off. The curve with 10-8 torr injected water
pressure is affected by the outgassing of the surface due to the remaining 6 monolayers after the
bake and, finally, the curve with 10-9 torr injected water at the trap is swamped by this outgassing.

Figure 7 A key result of the program is shown here.The average pressure in the beamtube vs time is plotted. The sys-
tem is cryopumped at both ends but water is injected at one end and beamed into the tube. The water pressure at the
input to the cryopumps is indicated. The violet, light blue, magenta and brown yellow curves are the average pressure
as a function of time with no surface adsorption. The injection pressures for the curves are indicated in the figure. At
1000 minutes the injection pressure is reduced to close to vanishing .The red, green, blue and brown
curves include the surface adsorption again with the same sequence of trap input pressures. The steady state average
water pressure is about 160 time smaller than pressure at the trap input for the high pressure cases. The 1/t desorption,
so characteristic of the water outgassing before bake, is reinitiated by the water load. The lower adsorption energy
sites that have been populated by the injected water have shorter emission times than the tightly bound sites still
occupied after the bake. These exhibit a much shallower 1/t dependence.

1.0e-6 torr

1.0e-7 torr

1.0e-8 torr

1.0e-8 torr

1.0e-9 torr

1.0e-9 torr

One result seen in Figure 7 and other runs is that the specification to keep the average pressure
below the goal pressure is that the water pressure at the entrance to the cryo trap should stay
below 10-8 torr. There is then no condition on the length of time the tube is exposed to the pres-
sure. Furthermore, if the pressure at the trap entrance is initially higher but eventually does make
it to 10-8 torr, the average pressure in the tube will fall to the goal pressure with a 1/t dependence.
In other words, the initial calculation limit imposing a fixed amount of water entering the beam
tube is an incorrect way to characterize the situation. As we will see presently, there are practical
limits imposed by the slow 1/t desorption dependence which do restrict the amount of water
injected.

Several other cases and findings help to bring understanding to the process and make the adsorp-
tion less mysterious and more intuitive.

Figure 8 The distribution of adsorbed water on the surface 3000 minutes after a pressure of 10-6 torr was removed
from the input to the cryopump. The time dependence of the average pressure in the beamtube is the top (red) curve in
Figure 7. The newly adsorbed water at this time amounts to an average of 5 x 10-4 monolayers (2.5 torr liters). Note
that the peak in the adsorption occurs about 600 meters from the injection point, further evidence that the adsorption
time is not faster than the pumping time. The prior estimate for the amount of water adsorbed on the surface to have
sufficient outgassing to compromis the goal average pressure was an increase of about 0.2 monolayers, much larger
than that of the figure. The reason is that the water bound to the surface after the bake has an activation energy of
18000K which is associated with a emission time of a month at 423K while the newly adsorbed water in the figure
has an activation energy of 11500K associated with an emission time of about 1000 minutes. The outgassing rate is
proportional to the surface coverage divided by the emission time. Equal outgassing rates from the different activa-
tion energy sites requires vastly different surface loadings.

Figure 9 A different kind of model run than in Figure 7. Here the entire beamtube is initially filled with water vapor
at the pressure Pstart while the entrance to the trap is held at pressure Ptrap through the entire calculation. Both the sit-
uations with and without surface adsorption are plotted. The blue and green curves are the exponential pump out of
the tube with cryotraps at the ends and no adsorption. The light blue, violet and red curves include the outgassing of
the monolayer left after the bakeout and the 1/t desorption from the newly adsorbed layers. The red curve is entirely
due to the adsorbed gas after the bakeout.

Some pedagogy One can always run the program to get useful answers about specific situations.
To gain insight into what is really happening, it is useful to look in more detail at various simple
cases. A useful clue comes from Figure 10 which shows the average pressure in the beamtube for
two different exposure times. In this calculation the tube begins with no water pressure other than
what is outgassed by the occupied sites remaining after the bake. At the beginning a pressure of
10-6 torr is applied at the trap entrance and the gas is beamed into the tube which is pumped by the
two crypumps at the ends. The two curves have different times by a factor 10 before the pressure
at the trap entrance is reduced to a small value. The important thing to notice is that the fall off
curves are very similar in shape even though there is a factor of 10 ratio in the amount of gas
injected and adsorbed.

Ptrap = 10^-8 , Pstart = 10^-5

Ptrap = 10^-8, Pstart = 10^-8

Ptrap = 10^-11, Pstart = 10^-11

Figure 10 The average pressure in the beamtube as a function of time. The pressure in the tube is 10-10 torr at the
beginning. At this time the pressure at the trap entrance is increased to 10-6 torr. The red curve shows the pumpout
and desorption following a reduction of the pressure at the trap at 1000 minutes while the green curve shows the pum-
pout and desorption following a reduction of the pressure at the trap at 10000 minutes. The desorption curves have
the same 1/t shape but with a factor of about 10 ratio in time and in quantity of gas. Such self similar curves imply a
fractal basis for the process. 1/t curves come about when exponential decays of different but neighboring time con-
stants are superposed - a little integral calculus will prove this to you.

Figure 11 A logarithmic plot of the occupation probability vs site adsorption energy after the events described in Fig-
ure 10. The red curve is the occupation probablity at 296K after the 423K bakout of the tube for 1 month. The small
peak at 12000 K is due to the adsorption of the gas in the beamtube as it approached 296K during cool down after the
bakeout. The peak would be smaller had we used larger pumps during the bakeout. The violet curve is the newly
adsorbed water during the injection for 1000 minutes. Note that the peak in the curve at 11500 K corresponds to emis-
sion times close to 1000 minutes at 296K. The green curve is that due to the water being adsorbed for 10000 minutes.
The occupation probabilities are about 10 times higher and the water is more tightly bound now peaking at sites with
emission times of 10000 minutes. It is easy to see what is going on in this model, longer immersion times cause both
more gas to be adsorbed and at higher adsorption energies. Crudely one can estimate that the 1/t dependence in the
desorption will be in units of the immersion time. The initial outgassing rate of the water will be about the same for
the two cases. Even though more water is on the surface for the longer immersion, the emission rate is smaller since
the adsorption energy is larger.

1 e -6 torr
trap input

after 423K bakeout

1000 minutes
at 8 e-9 torr

10000 minutes
at 8 e -9 torr

Quick estimate for the average pressure in the tube after water injection An estimate for the
time it takes to achieve the goal average pressure when the input to the trap has been held at water
pressure ptrap for a time ton is given by

 eq 2

where Lmax p is the distance from the trap into the tube where the maximum pressure occurs,
about 600 meters, a is the tube radius. The quantity in the large brackets is the ratio of the average
pressure to that at the trap, about 1/140 as determined from the computer program. As an exam-
ple, if the pressure at the trap is 10-7 torr for a month and then reduced to 10-8 torr, the average
pressure in the tube is 7 x 10-10 torr for that month and it will require 7 months before the average
pressure has dropped to the goal average pressure.

Measurements one could perform to validate the estimate Two techniques come to mind. A
well outgassed RGA installed at the port closest to the peak in the adsorbed water, about 600
meters from the trap, (the second or third port on the beamtube) should be able to detect the
increase in the water pressure when the pressure at the trap is increased. The measurement would
need to have a sensitivity of 10-10 torr of water with a stability of several days. The instruments
we have would need to operate in either counter or SEM mode as the Faraday mode will give only
about 10-14 amperes for this pressure, just barely enough to see above the noise in the electrome-
ters. The difficulty in making the measurement is in bringing power to the beamtube and being
careful enough in the bakeout of the 10 inch valve on the beamtube and the RGA not to be over-
come by the adsorbed water and its outgassing rate dependence on temperature. The best part of
this technique is that we have the equipment to carry it out.

An alternative technique is to measure the infrared absorption by the column of water in the tube.
At 10-10 torr there are 1.2 x 1012 molecules of water/cm2 in the 4 km beam path. With a frequency
modulated laser which alternately is off the infrared absorption line and then at its peak, it should
be possible to carry out shot noise limited absorption measurements specific to the water. Figure
12 shows the position of the stronger water absorption lines in the infrared region.

<p> 3π2a
4Lmax p

⎝ ⎠
⎜ ⎟
⎛ ⎞

ptrap
ton
t

------⎝ ⎠
⎛ ⎞∼

Figure 12 A histogram of the stronger water lines in the infrared. Transitions between the rotational and vibrational
states of water lead to several hundred thousand well seperated lines. The line widths are typically Doppler broadened
to 0.1 cm-1. The lines at around 4000 cm-1 seem most technologically accessible. They can be excited with tunable
lead salt lasers providing several 100’s mW. At the goal average pressure the absorption at line center will correspond
to about 0.3ppm in a single pass of the beamtube and is linear in the column density. The compilation of water lines
comes from the HITRAN listing maintained by Laurance Rothman at the Harvard-Smithsonian Center for Astrophys-
ics.

A nice senior thesis for a one of our students.

References:

Roald Hoffman Surface potential
Solids and Surfaces: A Chemist’s View of Bonding in Extended Structures
Roald Hoffman
VCH, New York (1988)

Adsorption Isotherms
M.M. Dubinin and L. V. Radushkevich
Proceedings Acad Sci USSR 55, 331 (1947)

Langmuir Surface adsorption model
S. Dushman
Scientific Foundation of Vacuum Technique
Wiley, New York (1962)

HITRAN LINE COMPILATION

APPENDIX B

The Statistical Mechanics Water Outgassing Model

The model uses Langmuir adsorption theory with a skewed Gaussian adsorption site energy

distribution. The model includes readsorption on the surface characterized by a potential

with an initial repulsive hill facing the vacuum followed by an attractive well. For ease of

calculation, the repulsive and attractive potentials are held in a �xed ratio. The model

is designed to describe the state of the surface far from equilibrium and results in the

Dubinin{Radushkevich isotherms at equilibrium.

The input parameters to the model are: the initial water loading, n (units of monolayers)

where one monolayer is assumed to have �0 = 1 � 1015 water molecules per cm2, the

average binding energy expressed as a temperature, T0, and the ratio, R, of the repulsive

to the attractive value of the surface potential.

The model predicts that the ratio of n=T0 determines the initial outgassing rate when

there is su�cient pumping capacity to neglect readsorption. The rise in outgassing rate

with temperature is not simply related to T0 but depends on the surface loading and

the time of pumping prior to the bake. As a consequence it is necessary to measure

n to get a reasonable estimate for T0. The ratio of the replusive to attractive part of

the surface potential, R , is in
uential in determining the readsorption rate and is best

estimated from data when the system is accumulating (isolated from the pumps) or from

the gradual change of outgassing rate after the system has been baked and returned to room

temperature. The �nal outgassing rate after a bake is dependent on all three parameters.

The accomodation rate, often used in adsorption calculations, is so strongly coupled to the

surface potential properties that it is set to .5 in the model.

The basis of the model is the assumption that the surface can be described by a distribution

function of water adsorption sites with di�erent binding energies. This assumption alone

gives the approximate 1=t dependence of the outgassing rate over the range of pumping

times involved. Although many di�erent distribution functions give similar behaviour (box,

exponential) the most physically appealing is the skewed Gaussian distribution which leads

to the Dubinin{Radushkevich (1946)(DR) adsorption isotherms at equilibrium.

The surface coverage, � molecules per cm2, of adsorbed molecules at equilibrium (equal

emission and readsorption) at a temperature T is given by the DR theory as

�

�m
= e�(T=T0)

2ln2(P=P0)

where �m is the surface coverage at the saturation vapour pressure P0 when all available

sites are �lled. P is the pressure at equilibrium with the surface held at temperature T

and T0 is the average binding energy expressed as a temperature. T0 is also the spread in

energy of the adsorption sites.

The distribution function of sites with adsorption energy Tbind that leads to the DR equa-

tion is the skewed Gaussian distribution

�(Tbind) =
�
2Tbind=T0

2
�
e�(Tbind=T0)

2

1

The distribution function in the above form is normalized so that

Z
1

0

�(Tbind)�Tbind = 1

The dynamics at the surface is described by the Langmuir adsorption hypothesis. Let

P (Tbind; t) be the probability that an adsorption site with binding energy Tbind is occupied

at time t and assume, furthermore, that only one molecule may be adsorbed per site. The

rate of change of the probability is then given by

dP (Tbind; t)

dt
= �

P (Tbind; t)

�emit

+
(1 � P (Tbind; t))

�ads
eq (1):

�emit is the desorption or emission time for an adsorption site with binding energy Tbind
given by the standard Boltzmann factor

�emit(Tbind) = �0e
Tbind=T

where T is the temperature of the surface and �0 is the oscillation period of the molecule

in a typical binding site. In the model �0 is set at 1� 10�12 seconds.

�ads is the readsorption time for an adsorption site with binding energy Tbind. In order to

get the experimentally observed readsorption rates it was found necessary to add another

degree of freedom to the outgassing model by providing both an attractive and a repulsive

term in the potential experienced by the molecule at the surface. The binding potential

(depth of the well) is Tbind while the binding potential is RTbind below the potential far

from the surface. This leaves a potential barrier (1 � R)Tbind at the vacuum side of the

surface. The readsorption time is thereby increased over the case with a simple well. The

construct of the potential barrier buries a host of physical phenomena such as the means by

which the molecule actually accomodates to the surface by losing its initial kinetic energy

to the excitation of phonons at the surface or the fraction of inelastic collisions made by

the water molecules. R is determined from the model by �xing a reasonable value for the

accomodation coe�cient, � = 0:5. In order to preserve the mathematical simplicity of the

model R is assumed independent of Tbind.

The readsorption time is determined by assuming that only molecules hitting the surface

with a kinetic energy greater than (1� R)Tbind can bind. The integral over the Maxwell

distribution of velocities in the gas gives the readsorption time as

�ads =
4n�0

��vth(1 + (1� R)Tbind=T)e�(1�R)Tbind=T

where vth is the average velocity of the water molecules in the gas at temperature T and

� is the water molecule density in the gas.

The time evolution of the probability of occupancy is given by the integration of equation

(1) as

P (Tbind; t) = P (Tbind; 0)e
�t=� + Pequil(Tbind)(1 � e�t=�)

2

using the de�nitions

� =
�emit�ads

(�emit + �ads)

Pequil(Tbind) =
�emit

(�emit + �ads)
:

The contribution of the outgassing rate as a function of time from a band of sites with

binding energy interval �Tbind is expressed as

dJout(t) = n�0 �(Tbind)(
dP (Tbind; t)

dt
) �Tbind

The total outgassing integral for the case of �ads ! 1 (no readsorption) and an initial

site occupation probability of 1 for all sites can be written in closed form as

Jout(t; T) =

�
2n�0T

tT0

�Z a

0

bln(y=a)e�(bln(y=a))
2

e�ydy

where b = T=T0 and a = t=�0.

The more general case including water emission and readsorption with changes in tem-

perature becomes su�ciently complex to require a computer code. The code has been

programmed using double precision in FORTRAN. The algorithmic steps of the program

are based on solving the time evolution of the probability as a function of experiment set

temperatures in each of 1024 energy bins Tbind spread uniformly between zero to 3T0. The

basic interval for computation is �t=�s = f where �s is the vacuum system time constant

= V=F , V is the volume and F the pumping speed. Usually su�ciently accurate results

are obtained with f < 0:2 in an iteration that �rst calculates the site occupancy from

P (Tbind; tj+1) = P (Tbind; tj) e
�f�s=�j + Pequil(Tbind; tj) (1 � e�f�s=�j)

and then establishes the time evolution of the surface water loading by taking the sum

�(tj+1) = n�0

3T0X
0

�(Tbind)P (Tbind; tj+1):

The outgassing rate is estimated by taking the di�erence in the surface loading per iteration

and dividing by the computation time interval

J(tj+1) =
(�(tj+1) � �(tj))

f�s

. With this value of the outgassing rate, the pressure, p, is calculated by

p(tj+1) = p(tj) e
�f + (

J(tj)A

F
)(1 � e�f)

where A is the surface area of the system. The pressure is used in determining �ads(tj+1)

for the next estimate of Pequil(tj+1) beginning the next step in the iteration until the entire

schedule of temperature vs time has been completed.

REFERENCES

Dubinin,M.M. and Radushkevich,L.V. Proc. Acad. Sci.,USSR 55, 331, (1947).

3

Φ

Tbind
RTbind

0

Integration:

P (Tbind; t) = P (Tbind; 0)e
�t=� + Pequil(Tbind)(1 � e�t=�)

where

� =
�emit�ads

(�emit + �ads)

and

Pequil(Tbind) =
�emit

(�emit + �ads)
:

Incremental outgassing rate of band of sites:

dJout(t) = n�0 �(Tbind)(
dP (Tbind; t)

dt
) �Tbind

Aside: for P (Tbind; 0) = 1 and �ads !1

Jout(t; T) =

�
2n�0T

tT0

�Z a

0

bln(y=a)e�(bln(y=a))
2

e�ydy

where

b = T=T0 a = t=�0

Computational algorithm (waterbakesm.f)

Step time:

�t=�s = f �s = V=F

Probability computation over 1024 binding energies 0! 3T0

P (Tbind; tj+1) = P (Tbind; tj) e
�f�s=�j + Pequil(Tbind; tj) (1� e�f�s=�j)

Surface coverage:

�(tj+1) = n�0

3T0X
0

�(Tbind)P (Tbind; tj+1):

Outgassing rate:

J(tj+1) =
(�(tj+1) � �(tj))

f�s

Pressure:

p(tj+1) = p(tj) e
�f + (

J(tj)A

F
)(1 � e�f)

GO BACK AND DO IT AGAIN (new time and temperatures)

c *******btwaterdistsurf2b.for October 13, 2008
c Program estimates the water pressure above the surface when
c loaded with water from geometric transmission by the trap and
c steady state pumping by the trap. The surface adsorption is
c treated by a program similar to waterbakesm using the numerical
c recipes Runge Kutta codes
c
c
c This version allows a change in the pressure at the trap
c while running in powers of ten per tstep
c
c This version writes a file of the occupation probabilities
c at the end for any tube section
c
c The program uses the Runge Kutta techniques from Numerical Recipes
c The calculation is made in cgs units with the pressure in torr
c
c The outgassing is described by:
c
c aj(k) = outgassing rate torr liters/sec in tube section k
c
c ad(k) = the deposition of water on section k. given by
c the pressure at the entrance to the trap multiplied by
c the molecular speed times the solid angle of the section
c subtended at the entrance to the trap normalized by 4*pi
c
c a = tube radius
c
c al = length of module/4*number of sections
c
c f = pumping speed of the cryopump at one end of the module
c
c v = thermal velocity of molecule at 300K
c
c pt = water pressure at entrance to trap
c
c alen0 = distance from front of trap to middle of the
c first section of tube
c
c fr(k) = the fraction of the injected molecules not adsorbed
c on the first encounter with the surface
c
c Difference equation to solve
c
c Section 1: dp/dt = ((2*v*a)/(3*al**2))*(p(2)-p(1)) + (2/a)*aj(1)
c end pt - (f*p(1))/(pi*al*a**2)
c + fr(k)*pt*v*a**2/(4*al)*((1/(alen0)**2)-(1/(alen0+al)**2))
c
c
c
c Section k : dp/dt = ((2*v*a)/(3*al**2))*(p(k-1)-2*p(k) +p(k+1))
c + (2/a)*aj(k)
c + fr(k)*pt*v*a**2/(4*al)*((1/(alen0+al*(k))**2)-
(1/(alen0+al(k+1))**2))
c
c
c last section dp/dt = ((2*v*a)/(3*al**2))*(p(k-1)-*p(k))

c + (2/a)*aj(nsec)
c + fr(k)*pt*v*a**2/(4*al)*((1/(alen0+al*nsec)**2)-
(1/(alen0+al*(nsec+1))**2))
c -(f*p(k))/(pi*al*a**2)
c
c
c The surface properties need to be calculated along with the pressure
distribution
c The results of the surface calculation are the outgassing rate in each section
aj(k)
c fr(k), the fraction of the directed "beam" from the trap entrance that is not
c adsorbed on the first encounter in section k
c
c The surface calculation uses the following additional variables
c
c t0 = the peak probability of the RD adsorption site distribution
c sigma0 = the saturated surface water loading in monolayers
c r = the repulsive potential of the surface
c alpha = accomodation coefficient of the surface for water
c tau0 = the molecular oscillation frequency at the surface : 1.0e-12 sec
c at(k) = the activation temperature of the surface site k
c ap(n,k) = the probability that site k is occupied in tube segment n
c temp = the surface temperature
c
c
c
c The program uses the Runge-Kutta algorithms given in Press et al
c Numerical Recipes 2 for the pumping dynamics and a simple inegration
c for the probability of occupancy evolution
c
 use winteracter
 character fileout*50,surfile*50
 dimension p(1000,8000),ystart(1000),time(8000),ystarts(1024)
 dimension fr(1000),aj(1000),at(1024),ap(1000,1024),w(1024)
 dimension aps(1024),z(1024)
 common /path/ kmax,kount,dxsav,xp,yp
 common /deriv/ aa,bb,cc,dd,ee,alen0,nsec,al
 common /deriv1/ t0,sigma0,r,alpha,tau0,temp,nsite,v
 write(unit=*,fmt=601)
601 format(' enter # of sections :' $)
 read(unit=*,fmt=602)nsec
602 format(i6)
 write(unit=*,fmt=1)
1 format(' enter pump speed lit/sec : ' $)
 read(unit=*,fmt=4)f
2 format(2e15.6)
 write(unit=*,fmt=605)
605 format(' enter amu of gas : '$)
 read(unit=*,fmt=4)amu
 write (unit=*,fmt=701)
701 format(' enter init p(torr) at n2 trap,lgth (m) to fst sect:'$)
 read(unit=*,fmt=702)ptinit,alen0
 write(unit=*,fmt=703)
703 format(' enter # 10^n reduction p(torr) at n2trap, time(min) : '$)
 read(unit=*,fmt=7022)nptfin,ptftm
7022 format(i5,e15.6)
702 format(2e15.6)

 alen0=alen0*100.0
4 format(e15.6)
c enter the fixed parameters
c beam tube radius cm
 a = 62.0
c thermal speed of gas in cm/sec
 v = (5.263e4)*sqrt(18.0/amu)
c module length cm
 al0 = 4.0e5
c number of sections
 an = real(nsec)
c section length cm
 al = al0/an
c conversion pumping speed from liters/sec to cc/sec
 f = f*1000.0
 write(unit=*,fmt=9)
9 format(' enter starting pressure in torr : '$)
 read(unit=*,fmt=4)pstart
 aa = (2.0*v*a)/(3.0*al**2)
 bb = 2.0/a
 dd = f/(3.14159*al*a**2)
 ee = (ptinit*v*a**2)/(4.0*al)
 do 1000 kt = 1,nsec
 p(kt,1)=pstart
1000 continue
 write(unit=*,fmt=7)
7 format(' time(minutes)/step, #steps total, #calsteps/step :'$)
 read(unit=*,fmt=8)tstep1,nstep,intstep
8 format(e15.6,2i6)
c write(unit=*,fmt=451)
c451 format(' enter 1 to write calc values : '$)
c read(unit=*,fmt=452)iwrt
c452 format(i3)
c convert time to seconds
 tstep = (tstep1/real(intstep))*60.0
 x2=0.0
 nvar = nsec
 eps = 1.0e-4
c h1 = (1.0e-3)*tstep
c hmin = (1.0e-7)*tstep
 h1 = (1.0e-7)*tstep
 hmin=(1.0e-11)*tstep
c surface program input
 write(unit=*,fmt=6011)
6011 format(' enter sigma0 surf coverage monoly,DR pk temp K :'$)
 read(unit=*,fmt=6022)sigma0,t0
6022 format(2e15.6)
c convert monolayers to particles/cm**2
 sigma0 = 1.0e15*sigma0
 write(unit=*,fmt=6033)
6033 format(' enter r repulsion term, alpha accom coef :'$)
 read(unit=*,fmt=6022)r,alpha
 write(unit=*,fmt=6066)
6066 format(' enter temperature K cr>=296K :'$)
 read(unit=*,fmt=4)temp
 if(temp.eq.0.0)temp=296.0
 write(unit=*,fmt=607)

607 format(' enter tau0 sec cr>=1.0e-12 sec : '$)
 read(unit=*,fmt=4)tau0
 if(tau0.eq.0.0)tau0 = 1.0e-12
 write(unit=*,fmt=604)
604 format(' enter activ T and occupt prob filename : '$)
 read(unit=*,fmt=6055)surfile
6055 format(a50)
 open(unit=3,file=surfile)
 read(unit=3,fmt=*)nsite
 do 610 k=1,nsite
 read(unit=3,fmt=*)at(k),aps(k)
610 continue
 close (3)
c set up weighting and activation energies
 deltat = 3.0*t0/real(nsite)
 sum = 0.0
 do 615 K=1,nsite
 w(k)=((2.0*at(k)*deltat)/t0**2)*exp(-(at(k)/t0)**2)
 sum = sum + w(k)
615 continue
c normalize
 do 616 k=1,nsite
 w(k)=w(k)/sum
 aj(k) = 0.0 !set first outgassing pf each sect 0
616 continue
c set all sections with equal water loading from file
 do 617 ksec = 1, nsec
 do 618 ksite = 1, nsite
 ap(ksec,ksite) = aps(ksite)
618 continue
617 continue
c start the calculation
c write(unit=*,fmt=9099)tstep
c9099 format(' tstep = ' 1pe12.3)
 kill = 0
 do 100 k=1,nstep
 if(kill.ge.nptfin)go to 6666
 tmm = x2/60.0
 if(tmm.ge.ptftm)then
 kill = kill + 1
 ee=ee/(10.0**kill)
 end if
6666 do 300 j=1,intstep
 x1 = x2
 x2 = x1 + tstep
 if(j.eq.1.and.k.eq.1)then
 do 1002 n=1,nsec
 ystart(n)= pstart
1002 continue
 time(k)=x1/60.0
 p(nsec+1,k)=pstart
 end if
c the surface routine
c establish the fraction of beamed gas that sticks
 do 210 ksec=1,nsec
 do 220 ksite=1,nsite
 z(ksite)=ap(ksec,ksite)

220 continue
 call beamfraction(ksec,w,deltat,z,at,frr)
 fr(ksec)=frr
210 continue
 do 620 ksec=1,nsec
c write(unit=*,fmt=901)ksec,k,j
c901 format(' main first: ksec = 'i5,' k = ' i5, 'j = 'i5)
 do 725 ksite=1,nsite
 ystarts(ksite)=ap(ksec,ksite)
725 continue
 do 230 ksite=1,nsite
 z(ksite)=ap(ksec,ksite)
230 continue
c determine the evolution of the occupation probability at each site
 call probev(ksec,ystart,tstep,at,z)
 do 240 ksite=1,nsite
 ap(ksec,ksite) = z(ksite)
240 continue
c determine the outgassing rate in each section
 sumb = 0.0
 suma = 0.0
 do 635 ksite=1,nsite
 suma = suma + ystarts(ksite)*w(ksite)*sigma0
 sumb = sumb + ap(ksec,ksite)*w(ksite)*sigma0
635 continue
 aj(ksec) = (suma-sumb)/(tstep*3.0e16) !torr cc/sec/cm**2
c ajtorr = aj(ksec)/1000.0 !convert to torr-liters/sec/cm**2
c if outgassing rate is < 0 , make it 0
 if(aj(ksec).lt.0.0)aj(ksec)=0.0
c write(unit=*,fmt=681)j,ksec,ajtorr,sumb,suma
c681 format(' j=' i3,'sec='i3,'t-l/sec/cm**2='1pe12.3,'suma='1pe12.3,
c & 'sumb='1pe12.3)
c read(unit=*,fmt=9901)ig
c9901 format(i3)
620 continue
 call odeint(ystart,nvar,x1,x2,eps,h1,hmin,nok,nbad,fr,aj)
300 continue
 do 1003 n=1,nsec
 p(n,k+1)=ystart(n)
c write(unit=*,fmt=420)time(k),n,p(n,k+1)
c420 format(' time ='1pe12.4,' n = 'i5,' pressure = '1pe12.4)
c read(unit=*,fmt=421)junk
c421 format(i3)
1003 continue
 time(k+1)=x2/60.0
c calculate the average pressure
 sum = 0.0
 do 400 n=1,nsec
 sum = sum + p(n,k+1)/an
400 continue
 p(nsec+1,k+1)=sum
 write(unit=*,fmt=11)k,time(k),p(nsec+1,k)
11 format(' k= 'i4,' time min='1pe15.6, '<p>(torr)='1pe15.6)
100 continue
2000 write(unit=*,fmt=77)
77 format('enter fileout: '$)
 read(unit=*,fmt=78)fileout

78 format(a50)
 open(unit=2,file=fileout)
 write(unit=*,fmt=2001)nsec+1,nsec+2
2001 format(' enter #segmt or 'i4,'=<p> or 'i4,'=p vs sec @ end:'$)
 read(unit=*,fmt=2002)ks
2002 format(i6)
 if(ks.eq.nsec+2)then
 write(unit=2,fmt=79)nsec
 do 2060 kz=1,nsec
 xz = real(kz)*al/100.0
 write(unit=2,fmt=80)xz,p(kz,nstep+1)
2060 continue
 end if
 write(unit=2,fmt=79)nstep+1
79 format(i5)
 do 200 kj=1,nstep+1
 write(unit=2,fmt=80)time(kj),p(ks,kj)
80 format(1pe15.6,1pe15.6)
200 continue
 close (2)
 write(unit=*,fmt=8850)
8850 format(' enter 1 for monolayer and prob files : ' $)
 read(unit=*,fmt=8851)imono
8851 format(i3)
 if(imono.eq.1)then
 write(unit=*,fmt=8852)
8852 format(' enter output file name for initial monolayers : '$)
 read(unit=*,fmt=78)fileout
 open(unit=3,file=fileout)
 write(unit=3,fmt=8853)nsec
8853 format(i5)
 do 8860 n=1,nsec
 aload = 0.0
 do 8865 k=1,nsite
 aload = aload + aps(k)*w(k)*sigma0/1.0e15
8865 continue
 asec = real(n)
 write(unit=3,fmt=8866)asec,aload
8866 format(1pe15.6,1pe15.6)
8860 continue
 close (3)

 write(unit=*,fmt=8872)
8872 format(' enter output file name for final monolayers : '$)
 read(unit=*,fmt=78)fileout
 open(unit=3,file=fileout)
 write(unit=3,fmt=8873)nsec
8873 format(i5)
 do 8870 n=1,nsec
 aload = 0.0
 do 8875 k=1,nsite
 aload = aload + ap(n,k)*w(k)*sigma0/1.0e15
8875 continue
 asec = real(n)
 write(unit=3,fmt=8866)asec,aload
8870 continue
 close (3)

 write(unit=*,fmt=7100)
7100 format(' enter output file name for final occupation prob : '$)
 read(unit=*,fmt=7101)fileout
7101 format(a50)
 open(unit=3,file=fileout)
 write(unit=3,fmt=7102)nsite
7102 format(i5)
 write(unit=*,fmt=7103)
7103 format(' enter number of section : '$)
 read(unit=*,fmt=7102)kksec
 do 7500 kk=1,nsite
 write(unit=3,fmt=7104)at(kk),ap(kksec,kk)
7500 continue
7104 format(1pe15.6,1pe15.6)
 close(3)
 end if

 write(unit=*,fmt=2003)
2003 format(' enter 1 to write another file: '$)
 read(unit=*,fmt=2004)igo
2004 format(i3)
 if(igo.eq.1)go to 2000
3000 continue
 end

 subroutine derivs(x,y,dydx,x2,fr,aj)
 dimension y(1000),dydx(1000),fr(1000),aj(1000)
 common /deriv/ aa,bb,cc,dd,ee,alen0,nsec,al
 do 100 n=2,nsec-1
 xy = aa*(y(n-1)+y(n+1)-2.0*y(n))+bb*aj(n)
 xxy=((1.0/(alen0+real(n)*al)**2)-(1.0/(alen0+real(n+1)*al)**2))
 dydx(n) = xy + ee*xxy*fr(n)
100 continue
 xxy = ((1.0/(alen0)**2)-(1.0/(alen0+al)**2))
 dydx(1) = aa*(y(2)-y(1)) + bb*aj(1) -dd*y(1) + ee*xxy*fr(1)
 xy = 2.0*aa*(y(nsec-1)-y(nsec)) + bb*aj(nsec) - dd*y(nsec)
 xxy = (1.0/(alen0+real(nsec)*al)**2)
 xxy=xxy-(1.0/(alen0+real(nsec+1)*al)**2)
 dydx(nsec) = xy + ee*xxy*fr(nsec)
 return
 end

 SUBROUTINE odeint(ystart,nvar,x1,x2,eps,h1,hmin,nok,nbad,fr,aj)
 INTEGER nbad,nok,nvar,KMAXX,MAXSTP,NMAX
 REAL eps,h1,hmin,x1,x2,ystart(nvar),TINY
 dimension fr(1000),aj(1000)
 PARAMETER (MAXSTP=10000,NMAX=1000,KMAXX=8000,TINY=1.e-30)
 INTEGER i,kmax,kount,nstp
 REAL dxsav,h,hdid,hnext,x,xsav,dydx(NMAX),xp(KMAXX),y(NMAX),
 *yp(NMAX,KMAXX),yscal(NMAX)
 COMMON /path/ kmax,kount,dxsav,xp,yp
 common /deriv/ aa,bb,cc,dd,ee,alen0,nsec,al
 x=x1
 h=sign(h1,x2-x1)

 nok=0
 nbad=0
 kount=0
 do 11 i=1,nvar
 y(i)=ystart(i)
11 continue
 if (kmax.gt.0) xsav=x-2.*dxsav
 do 16 nstp=1,MAXSTP
 call derivs(x,y,dydx,x2,fr,aj)
 do 12 i=1,nvar
 yscal(i)=abs(y(i))+abs(h*dydx(i))+TINY
12 continue
 if(kmax.gt.0)then
 if(abs(x-xsav).gt.abs(dxsav)) then
 if(kount.lt.kmax-1)then
 kount=kount+1
 xp(kount)=x
 do 13 i=1,nvar
 yp(i,kount)=y(i)
13 continue
 xsav=x
 endif
 endif
 endif
 if((x+h-x2)*(x+h-x1).gt.0.) h=x2-x
 call rkqs(y,dydx,nvar,x,h,eps,yscal,hdid,hnext,x2,fr,aj)
 if(hdid.eq.h)then
 nok=nok+1
 else
 nbad=nbad+1
 endif
 if((x-x2)*(x2-x1).ge.0.)then
 do 14 i=1,nvar
 ystart(i)=y(i)
14 continue
 if(kmax.ne.0)then
 kount=kount+1
 xp(kount)=x
 do 15 i=1,nvar
 yp(i,kount)=y(i)
15 continue
 endif
 return
 endif
 if(abs(hnext).lt.hmin) pause
 *'stepsize smaller than minimum in odeint'
 h=hnext
16 continue
 pause 'too many steps in odeint'
 return
 END
C (C) Copr. 1986-92 Numerical Recipes Software 7%W3.

 SUBROUTINE rkqs(y,dydx,n,x,htry,eps,yscal,hdid,hnext,x2,fr,aj)
 INTEGER n,NMAX
 REAL eps,hdid,hnext,htry,x,dydx(n),y(n),yscal(n)

 dimension fr(1000),aj(1000)
 PARAMETER (NMAX=1000)
CU USES derivs,rkck
 INTEGER i
 REAL errmax,h,xnew,yerr(NMAX),ytemp(NMAX),SAFETY,PGROW,PSHRNK,
 *ERRCON
 PARAMETER (SAFETY=0.9,PGROW=-.2,PSHRNK=-.25,ERRCON=1.89e-4)
 common /deriv/ aa,bb,cc,dd,ee,alen0,nsec,al
 h=htry
1 call rkck(y,dydx,n,x,h,ytemp,yerr,x2,fr,aj)
 errmax=0.
 do 11 i=1,n
 errmax=max(errmax,abs(yerr(i)/yscal(i)))
11 continue
 errmax=errmax/eps
 if(errmax.gt.1.)then
 h=SAFETY*h*(errmax**PSHRNK)
 if(h.lt.0.1*h)then
 h=.1*h
 endif
 xnew=x+h
 if(xnew.eq.x)pause 'stepsize underflow in rkqs'
 goto 1
 else
 if(errmax.gt.ERRCON)then
 hnext=SAFETY*h*(errmax**PGROW)
 else
 hnext=5.*h
 endif
 hdid=h
 x=x+h
 do 12 i=1,n
 y(i)=ytemp(i)
12 continue
 return
 endif
 END
C (C) Copr. 1986-92 Numerical Recipes Software 7%W3.

 SUBROUTINE rkck(y,dydx,n,x,h,yout,yerr,x2,fr,aj)
 INTEGER n,NMAX
 REAL h,x,dydx(n),y(n),yerr(n),yout(n)
 dimension fr(1000),aj(1000)
 PARAMETER (NMAX=1000)
CU USES derivs
 common /deriv/ aa,bb,cc,dd,ee,alen0,nsec,al
 INTEGER i
 REAL ak2(NMAX),ak3(NMAX),ak4(NMAX),ak5(NMAX),ak6(NMAX),
 *ytemp(NMAX),A2,A3,A4,A5,A6,B21,B31,B32,B41,B42,B43,B51,B52,B53,
 *B54,B61,B62,B63,B64,B65,C1,C3,C4,C6,DC1,DC3,DC4,DC5,DC6
 PARAMETER (A2=.2,A3=.3,A4=.6,A5=1.,A6=.875,B21=.2,B31=3./40.,
 *B32=9./40.,B41=.3,B42=-.9,B43=1.2,B51=-11./54.,B52=2.5,
 *B53=-70./27.,B54=35./27.,B61=1631./55296.,B62=175./512.,
 *B63=575./13824.,B64=44275./110592.,B65=253./4096.,C1=37./378.,
 *C3=250./621.,C4=125./594.,C6=512./1771.,DC1=C1-2825./27648.,
 *DC3=C3-18575./48384.,DC4=C4-13525./55296.,DC5=-277./14336.,

 *DC6=C6-.25)
 do 11 i=1,n
 ytemp(i)=y(i)+B21*h*dydx(i)
11 continue
 call derivs(x+A2*h,ytemp,ak2,x2,fr,aj)
 do 12 i=1,n
 ytemp(i)=y(i)+h*(B31*dydx(i)+B32*ak2(i))
12 continue
 call derivs(x+A3*h,ytemp,ak3,x2,fr,aj)
 do 13 i=1,n
 ytemp(i)=y(i)+h*(B41*dydx(i)+B42*ak2(i)+B43*ak3(i))
13 continue
 call derivs(x+A4*h,ytemp,ak4,x2,fr,aj)
 do 14 i=1,n
 ytemp(i)=y(i)+h*(B51*dydx(i)+B52*ak2(i)+B53*ak3(i)+B54*ak4(i))
14 continue
 call derivs(x+A5*h,ytemp,ak5,x2,fr,aj)
 do 15 i=1,n
 ytemp(i)=y(i)+h*(B61*dydx(i)+B62*ak2(i)+B63*ak3(i)+B64*ak4(i)+
 *B65*ak5(i))
15 continue
 call derivs(x+A6*h,ytemp,ak6,x2,fr,aj)
 do 16 i=1,n
 yout(i)=y(i)+h*(C1*dydx(i)+C3*ak3(i)+C4*ak4(i)+C6*ak6(i))
16 continue
 do 17 i=1,n
 yerr(i)=h*(DC1*dydx(i)+DC3*ak3(i)+DC4*ak4(i)+DC5*ak5(i)+DC6*
 *ak6(i))
17 continue
 return
 END
C (C) Copr. 1986-92 Numerical Recipes Software 7%W3.

 subroutine beamfraction(ksec,w,deltat,z,at,frr)
 common /deriv/ aa,bb,cc,dd,ee,alen0,nsec,al
 common /deriv1/ t0,sigma0,r,alpha,tau0,temp,nsite,v
 dimension w(1024),at(1024),z(1024)
 sum = 0.0
 do 200 ksite=1,nsite
 bc = (1.0-r)*at(ksite)/temp
 ac = (1.0+bc)*exp(-bc)
 sum = sum + w(ksite)*ac*(1.0-z(ksite))
200 continue
 frr = 1.0 -sum*alpha
c write(unit=*,fmt=201)ksec,frr
c201 format(' sec = 'i5, ' fraction = '1pe15.6)
 return
 end

 subroutine probev(ksec,ystart,tstep,at,z)
 dimension z(1024),at(1024)
 dimension ystart(1000)
 common /deriv/ aa,bb,cc,dd,ee,alen0,nsec,al
 common /deriv1/ t0,sigma0,r,alpha,tau0,temp,nsite,v
 conv = 1.0/3.0e16

c tc=1.0/aa
c mm=int(tstep/tc)
c dt = tstep/real(mm)
c do 50 m=1,mm
 do 100 n=1,nsite
 rt = at(n)/temp
 tauemit = tau0*exp(rt)
 tg = (1.0 - r)*rt
 tt = (1.0 + tg)*exp(-tg)
 tauads1 = conv*4.0*sigma0/(alpha*ystart(ksec)*v*tt)
 xxy=((1.0/(alen0+real(ksec)*al)**2)
 & -(1.0/(alen0+real(ksec+1)*al)**2))
 if(ksec.eq.1)xxy=((1.0/(alen0**2))-(1.0/(alen0+al)**2))
 if(ksec.eq.nsec)xxy=(1.0/(alen0+real(nsec)*al)**2)
 & -(1.0/(alen0+real(nsec+1)*al)**2)
 tauads2 = conv*sigma0/(ee*xxy*tt)
 tauads = (tauads1*tauads2)/(tauads1+tauads2)
 tau = (tauads*tauemit)/(tauads+tauemit)
 if(z(n).lt.1.0e-7.and.tauemit.lt.1.0e-8)go to 100
 if(z(n).gt.9.999e-1.and.tauads.gt.1.0e8)go to 100
 zequil = tauemit/(tauemit+tauads)
 ax = exp(-tstep/tau)
 z(n) = z(n)*ax + zequil*(1.0-ax)
c write(unit=*,fmt=901)ksec,n,m,z(n)
c901 format(' probev:ksec = 'i3,'n = 'i3,'m = 'i3,' z(n) = '1pe12.3)
c ig = ig +1
c if(ig.eq.50)then
c ig = 0
c read(unit=*,fmt=902)igg
c902 format(i5)
c end if
100 continue
c50 continue
 return
 end

c *******btwaterdistribution2a.for October 14, 2008
c Program estimates the water pressure above the surface when
c loaded with water from geometric transmission by the trap and
c steady state pumping by the trap
c
c This version allows the trap pressure to be reduced by powers
c of ten after a set time
c
c The program uses the Runge Kutta techniques from Numerical Recipes
c The calculation is made in cgs units with the pressure in torr
c
c The outgassing is described by:
c
c aj = outgassing rate torr liters/sec
c
c ad(k) = the deposition of water on section k. given by
c the pressure at the entrance to the trap multiplied by
c the molecular speed times the solid angle of the section
c subtended at the entrance to the trap normalized by 4*pi
c
c a = tube radius
c
c al = length of module/4*number of sections
c
c f = pumping speed of the cryopump at one end of the module
c
c v = thermal velocity of molecule at 300K
c
c pt = water pressure at entrance to trap
c
c alen0 = distance from front of trap to middle of the
c first section of tube
c
c Difference equation to solve
c
c Section 1: dp/dt = ((2*v*a)/(3*al**2))*(p(2)-p(1)) + (2/a)*aj
c end pt - (f*p(1))/(pi*al*a**2)
c + pt*v*a**2/(4*al)*((1/(alen0)**2)-(1/(alen0+al)**2))
c
c
c
c Section k : dp/dt = ((2*v*a)/(3*al**2))*(p(k-1)-2*p(k) +p(k+1))
c + (2/a)*aj
c + pt*v*a**2/(4*al)*((1/(alen0+al*(k))**2)-
(1/(alen0+al(k+1))**2))
c
c
c last section dp/dt = ((2*v*a)/(3*al**2))*(p(k-1)-*p(k))
c + (2/a)*aj
c + pt*v*a**2/(4*al)*((1/(alen0+al*k)**2)-
(1/(alen0+al*(k+1))**2))
c -(f*p(k))/(pi*al*a**2)
c
c The program uses the Runge-Kutta algorithms given in Press et al
c Numerical Recipes 2
c
 use winteracter

 character fileout*50
 dimension p(1000,8000),ystart(1000),time(8000)
 common /path/ kmax,kount,dxsav,xp,yp
 common /deriv/ aa,bb,cc,dd,ee,alen0,nsec,al
 write(unit=*,fmt=601)
601 format(' enter # of sections :' $)
 read(unit=*,fmt=602)nsec
602 format(i6)
 write(unit=*,fmt=1)
1 format(' enter pump speed lit/sec, outgassing (tl/seccm^2): ' $)
 read(unit=*,fmt=2)f,aj
2 format(2e15.6)
 aj = aj*1000.0
 write(unit=*,fmt=605)
605 format(' enter amu of gas : '$)
 read(unit=*,fmt=4)amu
 write (unit=*,fmt=701)
701 format(' enter init p(torr) at n2trap,lgth (m) to fst sect :'$)
 read(unit=*,fmt=702)ptinit,alen0
702 format(2e15.6)
 alen0=alen0*100.0
4 format(e15.6)
 write(unit=*,fmt=703)
703 format(' enter # 10^n reduction p(torr) at n2trap, time(min) : '$)
 read(unit=*,fmt=7022)nptfin,ptftm
7022 format(i5,e15.6)
c enter the fixed parameters
c beam tube radius cm
 a = 62.0
c thermal speed of gas in cm/sec
 v = (5.263e4)*sqrt(18.0/amu)
c module length cm
 al0 = 4.0e5
c number of sections
 an = real(nsec)
c section length cm
 al = al0/an
c conversion pumping speed from liters/sec to cc/sec
 f = f*1000.0
 write(unit=*,fmt=9)
9 format(' enter starting pressure in torr : '$)
 read(unit=*,fmt=4)pstart
 aa = (2.0*v*a)/(3.0*al**2)
 bb = (2.0*aj)/a
 dd = f/(3.14159*al*a**2)
 ee = (ptinit*v*a**2)/(4.0*al)
 do 1000 kt = 1,nsec
 p(kt,1)=pstart
1000 continue
 write(unit=*,fmt=7)
7 format(' time(minutes)/step, #steps total, #calsteps/step : '$)
 read(unit=*,fmt=8)tstep1,nstep,intstep
8 format(e15.6,2i6)
 write(unit=*,fmt=451)
451 format(' enter 1 to write calc values : '$)
 read(unit=*,fmt=452)iwrt
452 format(i3)

c convert time to seconds
 tstep = (tstep1/real(intstep))*60.0
 x2=0.0
 nvar = nsec
 eps = 1.0e-4
c h1 = (1.0e-3)*tstep
c hmin = (1.0e-7)*tstep
 h1 = (1.0e-7)*tstep
 hmin=(1.0e-11)*tstep
 kill = 0
 do 100 k=1,nstep
 if(kill.ge.nptfin)go to 6666
 tmm = x2/60.0
 if(tmm.ge.ptftm)then
 kill = kill + 1
 ee = ee/(10.0**kill)
 end if
6666 do 300 j=1,intstep
 x1 = x2
 x2 = x1 + tstep
 if(j.eq.1.and.k.eq.1)then
 do 1002 n=1,nsec
 ystart(n)= pstart
1002 continue
 time(k)=x1/60.0
 p(nsec+1,k)=pstart
 end if
 call odeint(ystart,nvar,x1,x2,eps,h1,hmin,nok,nbad)
300 continue
 do 1003 n=1,nsec
 p(n,k+1)=ystart(n)
c write(unit=*,fmt=420)time(k),n,p(n,k+1)
c420 format(' time ='1pe12.4,' n = 'i5,' pressure = '1pe12.4)
c read(unit=*,fmt=421)junk
c421 format(i3)
1003 continue
 time(k+1)=x2/60.0
c calculate the average pressure
 sum = 0.0
 do 400 n=1,nsec
 sum = sum + p(n,k+1)/an
400 continue
 p(nsec+1,k+1)=sum
 if(iwrt.eq.1)then
 write(unit=*,fmt=11)time(k),p(nsec+1,k)
 end if
11 format(' time (minutes) = '1pe15.6, 'avg p (torr) = '1pe15.6)
100 continue
2000 write(unit=*,fmt=77)
77 format('enter fileout: '$)
 read(unit=*,fmt=78)fileout
78 format(a50)
 open(unit=2,file=fileout)
 write(unit=*,fmt=2001)nsec+1,nsec+2
2001 format(' enter #segmt or 'i4,'=<p> or 'i4,'=p vs sec @ end:'$)
 read(unit=*,fmt=2002)ks
2002 format(i6)

 if(ks.eq.nsec+2)then
 write(unit=2,fmt=79)nsec
 do 2060 k=1,nsec
 xz = real(k)*al/100.0
 write(unit=2,fmt=80)xz,p(k,nstep+1)
2060 continue
 end if
 write(unit=2,fmt=79)nstep+1
79 format(i5)
 do 200 k=1,nstep+1
 write(unit=2,fmt=80)time(k),p(ks,k)
80 format(1pe15.6,1pe15.6)
200 continue
 close (2)
 write(unit=*,fmt=2003)
2003 format(' enter 1 to write another file: '$)
 read(unit=*,fmt=2004)igo
2004 format(i3)
 if(igo.eq.1)go to 2000
3000 continue
 end

 subroutine derivs(x,y,dydx,x2)
 dimension y(1000),dydx(1000)
 common /deriv/ aa,bb,cc,dd,ee,alen0,nsec,al
 do 100 n=2,nsec-1
 xy = aa*(y(n-1)+y(n+1)-2.0*y(n))+bb
 xxy=((1.0/(alen0+real(n)*al)**2)-(1.0/(alen0+real(n+1)*al)**2))
 dydx(n) = xy + ee*xxy
100 continue
 xxy = ((1.0/(alen0)**2)-(1.0/(alen0+al)**2))
 dydx(1) = aa*(y(2)-y(1)) + bb -dd*y(1) + ee*xxy
 xy = 2.0*aa*(y(nsec-1)-y(nsec)) + bb - dd*y(nsec)
 xxy = (1.0/(alen0+real(nsec)*al)**2)
 xxy=xxy-(1.0/(alen0+real(nsec+1)*al)**2)
 dydx(nsec) = xy + ee*xxy
 return
 end

 SUBROUTINE odeint(ystart,nvar,x1,x2,eps,h1,hmin,nok,nbad)
 INTEGER nbad,nok,nvar,KMAXX,MAXSTP,NMAX
 REAL eps,h1,hmin,x1,x2,ystart(nvar),TINY
 PARAMETER (MAXSTP=10000,NMAX=1000,KMAXX=8000,TINY=1.e-30)
 INTEGER i,kmax,kount,nstp
 REAL dxsav,h,hdid,hnext,x,xsav,dydx(NMAX),xp(KMAXX),y(NMAX),
 *yp(NMAX,KMAXX),yscal(NMAX)
 COMMON /path/ kmax,kount,dxsav,xp,yp
 common /deriv/ aa,bb,cc,dd,ee,alen0,nsec,al
 x=x1
 h=sign(h1,x2-x1)
 nok=0
 nbad=0
 kount=0
 do 11 i=1,nvar
 y(i)=ystart(i)
11 continue

 if (kmax.gt.0) xsav=x-2.*dxsav
 do 16 nstp=1,MAXSTP
 call derivs(x,y,dydx,x2)
 do 12 i=1,nvar
 yscal(i)=abs(y(i))+abs(h*dydx(i))+TINY
12 continue
 if(kmax.gt.0)then
 if(abs(x-xsav).gt.abs(dxsav)) then
 if(kount.lt.kmax-1)then
 kount=kount+1
 xp(kount)=x
 do 13 i=1,nvar
 yp(i,kount)=y(i)
13 continue
 xsav=x
 endif
 endif
 endif
 if((x+h-x2)*(x+h-x1).gt.0.) h=x2-x
 call rkqs(y,dydx,nvar,x,h,eps,yscal,hdid,hnext,x2)
 if(hdid.eq.h)then
 nok=nok+1
 else
 nbad=nbad+1
 endif
 if((x-x2)*(x2-x1).ge.0.)then
 do 14 i=1,nvar
 ystart(i)=y(i)
14 continue
 if(kmax.ne.0)then
 kount=kount+1
 xp(kount)=x
 do 15 i=1,nvar
 yp(i,kount)=y(i)
15 continue
 endif
 return
 endif
 if(abs(hnext).lt.hmin) pause
 *'stepsize smaller than minimum in odeint'
 h=hnext
16 continue
 pause 'too many steps in odeint'
 return
 END
C (C) Copr. 1986-92 Numerical Recipes Software 7%W3.

 SUBROUTINE rkqs(y,dydx,n,x,htry,eps,yscal,hdid,hnext,x2)
 INTEGER n,NMAX
 REAL eps,hdid,hnext,htry,x,dydx(n),y(n),yscal(n)
 PARAMETER (NMAX=1000)
CU USES derivs,rkck
 INTEGER i
 REAL errmax,h,xnew,yerr(NMAX),ytemp(NMAX),SAFETY,PGROW,PSHRNK,
 *ERRCON
 PARAMETER (SAFETY=0.9,PGROW=-.2,PSHRNK=-.25,ERRCON=1.89e-4)

 common /deriv/ aa,bb,cc,dd,ee,alen0,nsec,al
 h=htry
1 call rkck(y,dydx,n,x,h,ytemp,yerr,x2)
 errmax=0.
 do 11 i=1,n
 errmax=max(errmax,abs(yerr(i)/yscal(i)))
11 continue
 errmax=errmax/eps
 if(errmax.gt.1.)then
 h=SAFETY*h*(errmax**PSHRNK)
 if(h.lt.0.1*h)then
 h=.1*h
 endif
 xnew=x+h
 if(xnew.eq.x)pause 'stepsize underflow in rkqs'
 goto 1
 else
 if(errmax.gt.ERRCON)then
 hnext=SAFETY*h*(errmax**PGROW)
 else
 hnext=5.*h
 endif
 hdid=h
 x=x+h
 do 12 i=1,n
 y(i)=ytemp(i)
12 continue
 return
 endif
 END
C (C) Copr. 1986-92 Numerical Recipes Software 7%W3.

 SUBROUTINE rkck(y,dydx,n,x,h,yout,yerr,x2)
 INTEGER n,NMAX
 REAL h,x,dydx(n),y(n),yerr(n),yout(n)
 PARAMETER (NMAX=1000)
CU USES derivs
 common /deriv/ aa,bb,cc,dd,ee,alen0,nsec,al
 INTEGER i
 REAL ak2(NMAX),ak3(NMAX),ak4(NMAX),ak5(NMAX),ak6(NMAX),
 *ytemp(NMAX),A2,A3,A4,A5,A6,B21,B31,B32,B41,B42,B43,B51,B52,B53,
 *B54,B61,B62,B63,B64,B65,C1,C3,C4,C6,DC1,DC3,DC4,DC5,DC6
 PARAMETER (A2=.2,A3=.3,A4=.6,A5=1.,A6=.875,B21=.2,B31=3./40.,
 *B32=9./40.,B41=.3,B42=-.9,B43=1.2,B51=-11./54.,B52=2.5,
 *B53=-70./27.,B54=35./27.,B61=1631./55296.,B62=175./512.,
 *B63=575./13824.,B64=44275./110592.,B65=253./4096.,C1=37./378.,
 *C3=250./621.,C4=125./594.,C6=512./1771.,DC1=C1-2825./27648.,
 *DC3=C3-18575./48384.,DC4=C4-13525./55296.,DC5=-277./14336.,
 *DC6=C6-.25)
 do 11 i=1,n
 ytemp(i)=y(i)+B21*h*dydx(i)
11 continue
 call derivs(x+A2*h,ytemp,ak2,x2)
 do 12 i=1,n
 ytemp(i)=y(i)+h*(B31*dydx(i)+B32*ak2(i))
12 continue

 call derivs(x+A3*h,ytemp,ak3,x2)
 do 13 i=1,n
 ytemp(i)=y(i)+h*(B41*dydx(i)+B42*ak2(i)+B43*ak3(i))
13 continue
 call derivs(x+A4*h,ytemp,ak4,x2)
 do 14 i=1,n
 ytemp(i)=y(i)+h*(B51*dydx(i)+B52*ak2(i)+B53*ak3(i)+B54*ak4(i))
14 continue
 call derivs(x+A5*h,ytemp,ak5,x2)
 do 15 i=1,n
 ytemp(i)=y(i)+h*(B61*dydx(i)+B62*ak2(i)+B63*ak3(i)+B64*ak4(i)+
 *B65*ak5(i))
15 continue
 call derivs(x+A6*h,ytemp,ak6,x2)
 do 16 i=1,n
 yout(i)=y(i)+h*(C1*dydx(i)+C3*ak3(i)+C4*ak4(i)+C6*ak6(i))
16 continue
 do 17 i=1,n
 yerr(i)=h*(DC1*dydx(i)+DC3*ak3(i)+DC4*ak4(i)+DC5*ak5(i)+DC6*
 *ak6(i))
17 continue
 return
 END
C (C) Copr. 1986-92 Numerical Recipes Software 7%W3.

