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Abstract  The average water pressure in the beam tubes as a function of water injected at the ends 
is reanalysed. The initial estimates allowed no more than 400 torr liters of water injected at each 
end of a 2km beamtube module before compromising the goal average pressure of   torr 
with only end pumping and approximately a factor of 10 more injected water with distributed 
pumping. The new estimates do not give a fixed amount of water but rather provide a relation 
between the exposure time to water pressure and the system’s recovery time to the goal pressure. 
The initial estimates assumed that all the water injected into the tube would adsorb on the walls 
and did not account for the continued reduction in water outgassing rate with time. The new esti-
mates take into account the adsorption and reemision dynamics. The principal result is that most 
of the water injected into the tube is collected by the cryo pumps before adsorption. Furthermore, 
the gas that is adsorbed on the tube walls will be outgassed by the walls with a characteristic 1/t 
dependence scaled by the exposure time. 

The note reviews the initial calculations and presents the results of the new calculations. The cal-
culations are made with a statistical mechanics and surface physics program that was developed 
to understand the beamtube bakeout in the early 1990’s.  The program estimates the surface load-
ing of water over the pumping and thermal history of the beamtube and provides an outgassing 
rate. The outgassing rate is used to estimate the pressure knowing the pumping strategy. The pro-
gram is based on the Dubinin-Radushkevich surface adsorption theory which assumes a skewed 
Gaussian distribution of surface sites with adsorption energy. The surface dynamics uses the 
Langmuir adsorption theory with a molecular surface adsorption potential having both an attrac-
tive and repulsive term as hypothesized by Roald Hoffman. The theories and the FORTRAN pro-
gram used in the calculations are provided in an appendix to this note. 

Measurements that could be contemplated to establish the validity of the model and parameters 
are discussed briefly. Infra-red spectroscopic absorption measurement are considered as well as a 
method using a residual gas analyser placed at an appropriate position in the beam tube. Both 
methods would involve some work and preparation and cannot be approached casually.

Introduction During standard operations of opening and closing the vacuum system both in the 
LVEA and at the ends, we have now introduced somewhat more than 400 torr liters of water into 
each end of all the 2km modules of the beam tube. The increased installation and commissioning 
activity in preparing Enhanced LIGO and the anticipated activity in installation and commission-
ing Advanced LIGO make it urgent to establish if the original estimate is indeed correct and ,if 
necessary, to devise a strategy to reduce the average water pressure in the beamtubes when the 
improved interferometer sensitivity requires it.

The goal average pressure The goal pressure specification was set by the constraint that optical 
phase noise from forward scattering by molecules in the 4 km beam tube path not exceed 1/2 the 
standard quantum limit for a 1 ton test mass at 100 Hz. This corresponds to a strain noise of  1.5 x 
10-25 /  at 100 Hz . 
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The relation between a uniform outgassing rate  and the average pressure in the tube is given by

                                                      eq 1

where p, the pressure, is in torr, J, the uniform surface outgassing rate of water in torr cc/cm2 , a, 
the tube radius in cm, L, the tube length in cm, n, the number of pumps on the tube, F, the pump-
ing speed of a pump in cc/sec and, v, is the molecular speed in cm/sec. In our beam tubes the 
pumping port spacing is large enough so that the second term in eq 1 dominates. For water, sim-
ply increasing the pumping speed of the pumps is not an economical or efficient strategy. The 
pressure distribution in the tube is scalloped with a maximum pressure midway between pumps.

The goal constituent average pressures and outgassing rates associated with two pumping strate-
gies are given in Table 1.

The model parameters used in both the original and revised estimates are given in Table 2

Table 1: Goal average pressure and outgassing rates in the beamtube @ 300K

constituent average pressure end pump outgassing rate nine pump/module outgassing rate

torr torr liters/cm2sec torr liters/cm2sec

amu 18 (H2O) 1 x 10-10 2 x 10-15 2 x 10-14 

amu 100 6 x 10-13 5 x 10-18 4 x 10-16 

amu 300 5 x 10-14 2 x 10-19 1 x 10-17 

amu 600 8 x 10-15 3 x 10-20 2 x 10-18 

Table 2: Model parameters for bakeout and operations

param value param value

Lbake module lgth 2 km Lop lgth of arm 4 km

a radius of tube 62 cm To peak DR distribution 1 x 104 K

Tambient ambient T 296 K R repulsive term surface potential 0.7

nbake #  pumps bake 7 nop number of pumps in operation 2

Fbake bk pump spd 176 l/s Fop pumpspeed 1 x 105 l/s

Tbake max max bake T 425 K το molecular oscillation period 1 x 10-12 sec

tbake length of bake 4 weeks σinit initial water load 150 mlayers

σend bake end bake water load ~ 6 mlayers

α accomodation coefficient 0.5

p〈 〉L J 2πaL
nF
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The model surface parameters given in Table 2 were first determined during the test beamtube 
bakeout at the Chicago Bridge and Iron Co and iterated during the bakeout of the 8 tube modules 
at Hanford and Livingston. The model was fit to the pressure vs temperature and time history. The 
total water load (σinit) and RD peak adsorption energy (To) are uniquely fit by the bakeout data. 
The repulsive potential term (R) and the accomodation coefficient (α) are strongly correlated and 
both affect the estimate of the ultimate surface load  (σend bake) at the end of the bake. In the 
parameter estimates the accomodation coefficient was held at 0.5, a typical literature value , while 
R was allowed to vary.

Figure 1 The water outgassing data and model (dashed lines) of a trial bakeout of a 40 meter full scale LIGO beam-
tube at Chicago Bridge and Iron Co. The model used the same theory and similar parameters to those listed in the 
Table 2.

Original estimate The original estimate assumed, that after the beamtube bake, water introduced 
at the ends would be uniformaly distributed in the tubes and all the new water would adsorb on 
the walls at sites made available by the bake. The relation between the water introduced and the 
increase in the average pressure in the tube was determined by calculating the change in outgas-
sing rate with surface water loading using the site occupation probabilities after the bakout. The 
program was run repeatedly with slightly different initial conditions to explore the change in final 
outgassing rate at 296K as a function of small changes in the final surface loading. The derivative 
of final outgassing rate with final surface loading was obtained at 296K. Armed with the deriva-
tive, the last step in the estimate was to calculate the average pressure using eq 1 and then, lastly, 
calculating the amount of water injected at the ends on the assumption that all the injected water is 
uniformly adsorbed on the surface of the tube - a conservative assumption. Furthermore, in this 
approach, it is assumed that the water injected into the tube after the bake would occupy similar 
adsorption sites as that introduced prior or during the bake - a wrong assumption which it turns 
out is optimistic.

Table 3 provides the results that were used to establish the water injection limits in the memo  
LIGOT990000 written on 08/22/99 “Water Load on the Beam Tubes from Detector Components” 



that set 400 torr liters/module end of injected water as the limit before compromising the goal 
average pressure.

The new analysis The reanalysis of the beam tube water pressure as a function of water load  
includes the time and spatially varying surface load in the same surface model as that used to esti-
mate the molecular dynamics of the bakeout. The new analysis includes the non-uniform distribu-
tion of the adsorbed water and the molecular dynamics at the surface with the surface parameters 
determined by the bake. The water is injected into the beamtube as a beam transmitted by the   
cryopumps at the beamtube ends. The water molecules are no longer assumed to adsorb on con-
tact but rather the probability of adsorption using the detailed balance techniques in the bake pro-
gram are followed. The water pumping by the liquid nitrogen traps at the beam tube ends is 
included in the calculation. This approach qualitatively changes the way the estimate is made.

By running the detailed balance program, one finds that the relevant parameters are the water 
pressure at the entrance to the cryopump. The pressure distribution in the beamtube is determined 
by the beaming through the trap transmission and the standard diffusive free molecular flow to the 
cryopumps. In the low pressure regimes encountered in the apparatus, the pumping time constants 
are shorter than the adsorption times so that to first order the pressure distribution is determined 
by standard pumping calculations neglecting the surface adsorption. The equilibrium pressure dis-
tribution in the tube determines the adsorption rates. The emission and adsorption times for the 
adsorption sites depend on the activation energy and on the probability that a site is occupied.  
The adsorbing sites take exponentially longer to both emit and adsorb as a function of the adsorp-
tion energy. After the bake all sites at short emission and adsorption times are empty. As a conse-
quence, the longer the surface is exposed to the gas the more gas is adsorbed and at progressively 
higher adsorption energies. Should the gas be removed in the tube, the surface will outgas with a 
1/t dependence scaled by the exposure time. A simple algorithm at the end of this document using 
this description of the process provides results close to those derived from the computer program.

Table 3: Model results: increase in outgassing rate with water injected into the baked beam tube

injected water surface load water  outgassing rate @ 300K

torr liters monolayers torr liters/sec cm2 

0 6.4138 4 x 10-17 

25 6.4233 2 x 10-16

225 6.50 1.3 x 10-15

485 6.60 2.6 x 10-15

1500 7.0 8.1 x 10-15



  

Figure 2 The site occupation probability after the 1 month bake at 423K. This probability distribution is the starting 
point for the new estimate. As reference, the model assumes that the occupation probability is 1 for all sites before 
any pumping on the surface. The activation temperature is the binding energy for water molecules divided by Boltz
mann’s constant. The two curves indicate limits for the module bakes which had slightly different bake times and 
temperatures

. 

Figure 3 The DR molecular surface distribution as a function of activation energy before pumping and after the 423 
K bakeout. The fully loaded surface holds 150 monolayers and 6 tightly bound monolayers after the bake. The emis-
sion time of an adsorption site is plotted as a function of the adsorption energy. The adsorption energies that influence 
the outgassing at room temperature lie between 10000 and 15000 K.

With Figures 2 and 3 at hand it is worth evaluating several of the time scales associated with the 
pumping and surface dynamics. The average time for an occupied site to emit a water molecule is 

given by . With Tbind = 18000K, the binding energy associated with the transis-
tion between unoccupied and occupied sites at the end of the bake and a surface temperature of 

emission time at 296K

150 monolayers
all sites occupied

6 monolayers
after 1 month at 423K

τemit τ0e
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T
-----------
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423K,  the value during the bake; the emission time is close to 1 month. The duration of the bake-
out. After the bake the surface temperature is reduced to 296K and these sites are frozen out of the 
dynamics with emission times of millions of years. The pumping time constant associated with 
tube sections in the middle of the beamtube is roughly (dealt with correctly in the computer pro-

gram)   , a few hours for water at room temperature. 

 Figure 4    Adsorption times at  296K for different pressures at the surface vs site activation energy. The emission 
time is the same as in Figure 3 .                    
The adsorption time for gas above the surface to occupy a site ,varies as 

                           

where σinit is the initial surface loading expressed in molecules per cm2 (150 monolayers corre-
sponds to 1.5 x 1017 molecules/cm2) and ρ is the pressure expressed in molecules per cm3 (10-8 
torr is equivalent to 3 x 108 molecules per cm3 at 300K ) . The adsorption time is inversely pro-
portional to the pressure above the surface.  Figure 4 shows the adsorption time as a function of 
the adsorption energy for a variety of pressures above the surface. In the pressure  and pumping 
regimes we encounter in the apparatus (p < 10-5 torr),  the adsorption times are longer than both 
the emission times for a site and longer than the pumping time. Under these circumstances the 
pressure distribution in the tube is close to being determined by standard free molecular diffusion 
in equilibrium with the pumps without regard to the adsorption. There is adsorption, the change in 
the probability of site occupancy varies as
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Figure 5 The solid angle subtended by the actual tube sections at the entrance to the cryopump. The solid angle deter-
mines the amount of beamed water hitting each 18meter section of the tube. The beaming is incorporated into the 
computer program.

The water injected into the tube is transmitted as a beam through the trap. The amount of water 
hitting a section of the tube is

                                         

where v is the molecular velocity, A the area of the trap entrance , ρ the molecular density at the 
entrance, and ΔΩsection the solid angle subtended by the tube section. The section is determined 
by the finite element size in the computer program. Figure 6 shows the pressure distribution in 
the tube with this beaming.

Figure 6 The pressure distribution in the beamtube for cryo pumping at both ends with a water pressure of 10-8 torr at 
the entry to the cryopump at the LVEA. The water is transmitted by the cryotrap and is beamed down the tube.. The 
curves are plotted for two different pumping speeds at the ends. The goal average pressure of less than 10-10 torr is 
satisfied with the existing cryopumps (105 liters/sec) if both ends have water injection at pressure less or equal to 
10-8 torr.

Assume: 10 meters from trap to begin of beamtube
18 meter long beamtube sections

Q·
ΔΩsection

4π
---------------------ρvAtrap entrance=

1.0x10^4 liters/sec at ends

1.0x10^5 liters/sec at ends

<p> = 1.2 x 10^-10 torr

<p> = 5.0 x 10^-11 torr

Beamtube divided into 888 sections
Water at entrance to LVEA trap only
NO adsorption on the walls
Result from btwaterdistribution.for



The finite difference program that generated Figure 6 (btwaterdistribution2a.for) is included in 
the Appendix. The method is to divide the tube into 888 finite element sections and carryout free 
molecular flow between them. The pumps are placed at the ends and the beaming through the cry-
otrap takes place at one end.

The same finite difference program is adapted to the surface dynamics using the DR adsorption 
state distribution and the Langmuir adsorption theory (btwaterdistsurf2b.for) with the Roald Hoff-
man adsorption potential. A relevent result from this program is shown in Figure 7 which plots 
the average water pressure along the beamtube as a function time for a range of pressures at the 
trap input. The configuration is again two cryopumps, one at each end of the tube, and beaming of 
the water from one end. The pressure at the cryopump entrance is indicated in the figure running 
in decades from 10-6 to 10-9 torr. Curves are drawn for both the case with surface adsorption and 
without. At 1000 minutes the average pressure for all cases has come to steady state. At this time 
the water pressure at the input to the cryotrap is turned off. The curves without surface adsorption 
all drop exponentially toward lower pressure from that time. The curves that include adsorption 
follow the prior curves for the higher injection pressures but then show a typical desorption curve 
varying as 1/t after the water injection has been turned off. The curve with 10-8 torr injected water 
pressure is affected by the outgassing of the surface due to the remaining 6 monolayers after the 
bake and, finally, the curve with 10-9 torr injected water at the trap is swamped by this outgassing.

Figure 7 A key result of the program is shown here.The average pressure in the beamtube vs time is plotted. The sys-
tem is cryopumped at both ends but water is injected at one end and beamed into the tube. The water pressure at the 
input to the cryopumps is indicated. The violet, light blue, magenta and brown yellow curves are the average pressure 
as a function of time with no surface adsorption. The injection pressures for the curves are indicated in the figure. At 
1000 minutes the injection pressure is reduced to close to vanishing .The red, green, blue and brown
curves include the surface adsorption again with the same sequence of trap input pressures. The steady state average 
water pressure is about 160 time smaller than pressure at the trap input for the high pressure cases. The 1/t desorption, 
so characteristic of the water outgassing before bake, is reinitiated by the water load. The lower adsorption energy 
sites that have been populated by the injected water have shorter emission times than the tightly bound sites still 
occupied after the bake. These exhibit a much shallower 1/t dependence.

1.0e-6 torr

1.0e-7 torr

1.0e-8 torr

1.0e-8 torr

1.0e-9 torr

1.0e-9 torr



One result seen in Figure 7 and other runs is that the specification to keep the average pressure 
below the goal pressure is that the water pressure at the entrance to the cryo trap should stay 
below 10-8 torr. There is then no condition on the length of time the tube is exposed to the pres-
sure. Furthermore, if the pressure at the trap entrance is initially higher but eventually does make 
it to 10-8 torr, the average pressure in the tube will fall to the goal pressure with a 1/t dependence. 
In other words, the initial calculation limit imposing  a fixed amount of water entering the beam 
tube is an incorrect way to characterize the situation. As we will see presently, there are practical 
limits imposed by the slow 1/t desorption dependence which do restrict the amount of water 
injected.

Several other cases and findings help to bring understanding to the process and make the adsorp-
tion less mysterious and more intuitive. 

Figure 8 The distribution of adsorbed water on the surface 3000 minutes after a pressure of 10-6 torr was removed 
from the input to the cryopump. The time dependence of the average pressure in the beamtube is the top (red) curve in 
Figure 7. The newly adsorbed water at this time amounts to an average of 5 x 10-4 monolayers (2.5 torr liters). Note 
that the peak in the adsorption occurs about 600 meters from the injection point, further evidence that the adsorption 
time is not faster than the pumping time. The prior estimate for the amount of water adsorbed on the surface to have 
sufficient outgassing to compromis the goal average pressure was an increase of about 0.2 monolayers, much larger 
than that of the figure. The reason is that the water bound to the surface after the bake has an activation energy of 
18000K which is associated with a emission time of a month at 423K while the newly adsorbed water in the figure 
has an activation energy of 11500K associated with an emission time of about 1000 minutes.  The outgassing rate is 
proportional to the surface coverage divided by the emission time. Equal outgassing rates from the different activa-
tion energy sites requires vastly different surface loadings.



Figure 9 A different kind of model run than in Figure 7.  Here the entire beamtube is initially filled with water vapor 
at the pressure Pstart while the entrance to the trap is held at pressure Ptrap  through the entire calculation. Both the sit-
uations with and without surface adsorption are plotted. The blue and green curves are the exponential pump out of 
the tube with cryotraps at the ends and no adsorption. The light blue, violet and red curves include the outgassing of 
the monolayer left after the bakeout and the 1/t desorption from the newly adsorbed layers. The red curve is entirely 
due to the adsorbed gas after the bakeout. 

Some pedagogy  One can always run the program to get useful answers about specific situations. 
To gain insight into what is really happening, it is useful to look in more detail at various simple 
cases. A useful clue comes from Figure 10 which shows the average pressure in the beamtube for 
two different exposure times. In this calculation the tube begins with no water pressure other than 
what is outgassed by the occupied sites remaining after the bake. At the beginning a pressure of 
10-6 torr is applied at the trap entrance and the gas is beamed into the tube which is pumped by the 
two crypumps at the ends. The two curves have different times by a factor 10 before the pressure 
at the trap entrance is reduced to a small value. The important thing to notice is that the fall off 
curves are very similar in shape even though there is a factor of 10 ratio in the amount of gas 
injected and adsorbed.

Ptrap = 10^-8 , Pstart = 10^-5

Ptrap = 10^-8, Pstart = 10^-8

Ptrap = 10^-11, Pstart = 10^-11



Figure 10 The average pressure in the beamtube as a function of time. The pressure in the tube is 10-10 torr at the 
beginning. At this time the pressure at the trap entrance is increased to 10-6 torr. The red curve shows the pumpout 
and desorption following a reduction of the pressure at the trap at 1000 minutes while the green curve shows the pum-
pout and desorption following a reduction of the pressure at the trap at 10000 minutes. The desorption curves have 
the same 1/t shape but with a factor of about 10 ratio in time and in quantity of gas. Such self similar curves imply a 
fractal basis for the process. 1/t curves come about when exponential decays of different but neighboring time con-
stants are superposed - a little integral calculus will prove this to you.

Figure 11 A logarithmic plot of the occupation probability vs site adsorption energy after the events described in Fig-
ure 10. The red curve is the occupation probablity at 296K after the 423K bakout of the tube for 1 month. The small 
peak at 12000 K is due to the adsorption of the gas in the beamtube as it approached 296K during cool down after the 
bakeout. The peak would be smaller had we used larger pumps during the bakeout. The violet curve is the newly 
adsorbed water during the injection for 1000 minutes. Note that the peak in the curve at 11500 K corresponds to emis-
sion times close to 1000 minutes at 296K. The green curve is that due to the water being adsorbed for 10000 minutes. 
The occupation probabilities are about 10 times higher and the water is more tightly bound now peaking at sites with 
emission times of 10000 minutes. It is easy to see what is going on in this model, longer immersion times cause both 
more gas to be adsorbed and at higher adsorption energies. Crudely one can estimate that the 1/t dependence in the 
desorption will  be in units of the immersion time. The initial outgassing rate of the water will be about the same for 
the two cases. Even though more water is on the surface for the longer immersion, the emission rate is smaller since 
the adsorption energy is larger.

1 e -6 torr
trap input

after 423K bakeout

1000 minutes
at 8 e-9 torr
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Quick estimate for the average pressure in the tube after water injection An estimate for the 
time it takes to achieve the goal average pressure when the input to the trap has been held at water 
pressure ptrap for a time ton is given by

                                                         eq 2

where  Lmax p is the distance from the trap into the tube where the maximum pressure occurs, 
about 600 meters, a is the tube radius. The quantity in the large brackets is the ratio of the average 
pressure to that at the trap, about 1/140  as determined from the computer program. As an exam-
ple, if the pressure at the trap is 10-7 torr for a month  and then reduced to 10-8 torr, the average 
pressure in the tube is 7 x 10-10 torr for that month and it will require 7 months before the average 
pressure has dropped to the goal average pressure.

Measurements one could perform to validate the estimate Two techniques come to mind. A 
well outgassed RGA installed at the port closest to the peak in the adsorbed water, about 600 
meters from the trap, (the second or third port on the beamtube) should be able to detect the 
increase in the water pressure when the pressure at the trap is increased. The measurement would 
need to have a sensitivity of 10-10 torr of water with a stability of several days. The instruments 
we have would need to operate in either counter or SEM mode as the Faraday mode will give only 
about 10-14 amperes for this pressure, just barely enough to see above the noise in the electrome-
ters. The difficulty in making the measurement is in bringing power to the beamtube and being 
careful enough in the bakeout of the 10 inch valve on the beamtube and the RGA not to be over-
come by the adsorbed water and its outgassing rate dependence on temperature. The best part of 
this technique is that we have the equipment to carry it out.

An alternative technique is to measure the infrared absorption by the column of water in the tube. 
At 10-10 torr there are 1.2 x 1012 molecules of water/cm2 in the 4 km beam path. With a frequency 
modulated laser which alternately is off the infrared absorption line and then at its peak, it should 
be possible to carry out shot noise limited absorption measurements specific to the water. Figure 
12 shows the position of the stronger water absorption lines in the infrared region.
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Figure 12 A histogram of the stronger water lines in the infrared. Transitions between the rotational and vibrational 
states of water lead to several hundred thousand well seperated lines. The line widths are typically Doppler broadened 
to 0.1 cm-1. The lines at around 4000 cm-1 seem most technologically accessible. They can be excited with tunable 
lead salt lasers providing several 100’s mW. At the goal average pressure the absorption at line center will correspond 
to about 0.3ppm in a single pass of the beamtube and is linear in the column density. The compilation of water lines 
comes from the HITRAN listing maintained by Laurance Rothman at the Harvard-Smithsonian Center for Astrophys-
ics.

A nice senior thesis for a one of our students.
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APPENDIX B

The Statistical Mechanics Water Outgassing Model

The model uses Langmuir adsorption theory with a skewed Gaussian adsorption site energy

distribution. The model includes readsorption on the surface characterized by a potential

with an initial repulsive hill facing the vacuum followed by an attractive well. For ease of

calculation, the repulsive and attractive potentials are held in a �xed ratio. The model

is designed to describe the state of the surface far from equilibrium and results in the

Dubinin{Radushkevich isotherms at equilibrium.

The input parameters to the model are: the initial water loading, n (units of monolayers)

where one monolayer is assumed to have �0 = 1 � 1015 water molecules per cm2, the

average binding energy expressed as a temperature, T0, and the ratio, R, of the repulsive

to the attractive value of the surface potential.

The model predicts that the ratio of n=T0 determines the initial outgassing rate when

there is su�cient pumping capacity to neglect readsorption. The rise in outgassing rate

with temperature is not simply related to T0 but depends on the surface loading and

the time of pumping prior to the bake. As a consequence it is necessary to measure

n to get a reasonable estimate for T0. The ratio of the replusive to attractive part of

the surface potential, R , is in
uential in determining the readsorption rate and is best

estimated from data when the system is accumulating (isolated from the pumps) or from

the gradual change of outgassing rate after the system has been baked and returned to room

temperature. The �nal outgassing rate after a bake is dependent on all three parameters.

The accomodation rate, often used in adsorption calculations, is so strongly coupled to the

surface potential properties that it is set to .5 in the model.

The basis of the model is the assumption that the surface can be described by a distribution

function of water adsorption sites with di�erent binding energies. This assumption alone

gives the approximate 1=t dependence of the outgassing rate over the range of pumping

times involved. Although many di�erent distribution functions give similar behaviour (box,

exponential) the most physically appealing is the skewed Gaussian distribution which leads

to the Dubinin{Radushkevich (1946)(DR) adsorption isotherms at equilibrium.

The surface coverage, � molecules per cm2, of adsorbed molecules at equilibrium (equal

emission and readsorption) at a temperature T is given by the DR theory as

�

�m
= e�(T=T0)

2ln2(P=P0)

where �m is the surface coverage at the saturation vapour pressure P0 when all available

sites are �lled. P is the pressure at equilibrium with the surface held at temperature T

and T0 is the average binding energy expressed as a temperature. T0 is also the spread in

energy of the adsorption sites.

The distribution function of sites with adsorption energy Tbind that leads to the DR equa-

tion is the skewed Gaussian distribution

�(Tbind) =
�
2Tbind=T0

2
�
e�(Tbind=T0)

2

1



The distribution function in the above form is normalized so that

Z
1

0

�(Tbind)�Tbind = 1

The dynamics at the surface is described by the Langmuir adsorption hypothesis. Let

P (Tbind; t) be the probability that an adsorption site with binding energy Tbind is occupied

at time t and assume, furthermore, that only one molecule may be adsorbed per site. The

rate of change of the probability is then given by

dP (Tbind; t)

dt
= �

P (Tbind; t)

�emit

+
(1 � P (Tbind; t))

�ads
eq (1):

�emit is the desorption or emission time for an adsorption site with binding energy Tbind
given by the standard Boltzmann factor

�emit(Tbind) = �0e
Tbind=T

where T is the temperature of the surface and �0 is the oscillation period of the molecule

in a typical binding site. In the model �0 is set at 1� 10�12 seconds.

�ads is the readsorption time for an adsorption site with binding energy Tbind. In order to

get the experimentally observed readsorption rates it was found necessary to add another

degree of freedom to the outgassing model by providing both an attractive and a repulsive

term in the potential experienced by the molecule at the surface. The binding potential

(depth of the well) is Tbind while the binding potential is RTbind below the potential far

from the surface. This leaves a potential barrier (1 � R)Tbind at the vacuum side of the

surface. The readsorption time is thereby increased over the case with a simple well. The

construct of the potential barrier buries a host of physical phenomena such as the means by

which the molecule actually accomodates to the surface by losing its initial kinetic energy

to the excitation of phonons at the surface or the fraction of inelastic collisions made by

the water molecules. R is determined from the model by �xing a reasonable value for the

accomodation coe�cient, � = 0:5. In order to preserve the mathematical simplicity of the

model R is assumed independent of Tbind.

The readsorption time is determined by assuming that only molecules hitting the surface

with a kinetic energy greater than (1� R)Tbind can bind. The integral over the Maxwell

distribution of velocities in the gas gives the readsorption time as

�ads =
4n�0

��vth(1 + (1� R)Tbind=T )e�(1�R)Tbind=T

where vth is the average velocity of the water molecules in the gas at temperature T and

� is the water molecule density in the gas.

The time evolution of the probability of occupancy is given by the integration of equation

(1) as

P (Tbind; t) = P (Tbind; 0)e
�t=� + Pequil(Tbind)(1 � e�t=� )

2



using the de�nitions

� =
�emit�ads

(�emit + �ads)

Pequil(Tbind) =
�emit

(�emit + �ads)
:

The contribution of the outgassing rate as a function of time from a band of sites with

binding energy interval �Tbind is expressed as

dJout(t) = n�0 �(Tbind)(
dP (Tbind; t)

dt
) �Tbind

The total outgassing integral for the case of �ads ! 1 (no readsorption) and an initial

site occupation probability of 1 for all sites can be written in closed form as

Jout(t; T ) =

�
2n�0T

tT0

�Z a

0

bln(y=a)e�(bln(y=a))
2

e�ydy

where b = T=T0 and a = t=�0.

The more general case including water emission and readsorption with changes in tem-

perature becomes su�ciently complex to require a computer code. The code has been

programmed using double precision in FORTRAN. The algorithmic steps of the program

are based on solving the time evolution of the probability as a function of experiment set

temperatures in each of 1024 energy bins Tbind spread uniformly between zero to 3T0. The

basic interval for computation is �t=�s = f where �s is the vacuum system time constant

= V=F , V is the volume and F the pumping speed. Usually su�ciently accurate results

are obtained with f < 0:2 in an iteration that �rst calculates the site occupancy from

P (Tbind; tj+1) = P (Tbind; tj) e
�f�s=�j + Pequil(Tbind; tj) (1 � e�f�s=�j )

and then establishes the time evolution of the surface water loading by taking the sum

�(tj+1) = n�0

3T0X
0

�(Tbind)P (Tbind; tj+1):

The outgassing rate is estimated by taking the di�erence in the surface loading per iteration

and dividing by the computation time interval

J(tj+1) =
(�(tj+1) � �(tj))

f�s

. With this value of the outgassing rate, the pressure, p, is calculated by

p(tj+1) = p(tj) e
�f + (

J(tj)A

F
)(1 � e�f )

where A is the surface area of the system. The pressure is used in determining �ads(tj+1)

for the next estimate of Pequil(tj+1) beginning the next step in the iteration until the entire

schedule of temperature vs time has been completed.

REFERENCES

Dubinin,M.M. and Radushkevich,L.V. Proc. Acad. Sci.,USSR 55, 331, (1947).
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Integration:

P (Tbind; t) = P (Tbind; 0)e
�t=� + Pequil(Tbind)(1 � e�t=� )

where

� =
�emit�ads

(�emit + �ads)

and

Pequil(Tbind) =
�emit

(�emit + �ads)
:

Incremental outgassing rate of band of sites:

dJout(t) = n�0 �(Tbind)(
dP (Tbind; t)

dt
) �Tbind

Aside: for P (Tbind; 0) = 1 and �ads !1

Jout(t; T ) =

�
2n�0T

tT0

�Z a

0

bln(y=a)e�(bln(y=a))
2

e�ydy

where

b = T=T0 a = t=�0



Computational algorithm (waterbakesm.f)

Step time:

�t=�s = f �s = V=F

Probability computation over 1024 binding energies 0! 3T0

P (Tbind; tj+1) = P (Tbind; tj) e
�f�s=�j + Pequil(Tbind; tj) (1� e�f�s=�j )

Surface coverage:

�(tj+1) = n�0

3T0X
0

�(Tbind)P (Tbind; tj+1):

Outgassing rate:

J(tj+1) =
(�(tj+1) � �(tj))

f�s

Pressure:

p(tj+1) = p(tj) e
�f + (

J(tj)A

F
)(1 � e�f )

GO BACK AND DO IT AGAIN (new time and temperatures)











c *******btwaterdistsurf2b.for   October 13, 2008 
c Program estimates the water pressure above the surface when 
c loaded with water from geometric transmission by the trap and 
c steady state pumping by the trap. The surface adsorption is 
c treated by a program similar to waterbakesm using the numerical 
c recipes Runge Kutta codes 
c 
c 
c This version allows a change in the pressure at the trap 
c while running in powers of ten per tstep 
c 
c This version writes a file of the occupation probabilities 
c at the end for any tube section 
c 
c The program uses the Runge Kutta techniques from Numerical Recipes 
c The calculation is made in cgs units with the pressure in torr 
c 
c  The outgassing is described by: 
c 
c      aj(k) = outgassing rate torr liters/sec in tube section k 
c 
c      ad(k) = the deposition of water on section k. given by 
c      the pressure at the entrance to the trap multiplied by 
c      the molecular speed times the solid angle of the section 
c      subtended at the entrance to the trap normalized by 4*pi 
c 
c      a = tube radius 
c 
c      al = length of module/4*number of sections 
c 
c      f = pumping speed of the cryopump at one end of the module 
c 
c      v = thermal velocity of molecule at 300K 
c 
c      pt = water pressure at entrance to trap 
c 
c      alen0 = distance from front of trap to middle of the 
c              first section of tube 
c 
c      fr(k) = the fraction of the injected molecules not adsorbed 
c      on the first encounter with the surface 
c 
c Difference equation to solve 
c 
c Section 1:  dp/dt = ((2*v*a)/(3*al**2))*(p(2)-p(1)) + (2/a)*aj(1) 
c end pt            - (f*p(1))/(pi*al*a**2)  
c                   + fr(k)*pt*v*a**2/(4*al)*((1/(alen0)**2)-(1/(alen0+al)**2)) 
c 
c 
c 
c Section k : dp/dt = ((2*v*a)/(3*al**2))*(p(k-1)-2*p(k) +p(k+1))  
c                     + (2/a)*aj(k)   
c                     + fr(k)*pt*v*a**2/(4*al)*((1/(alen0+al*(k))**2)-
(1/(alen0+al(k+1))**2)) 
c                      
c 
c last section dp/dt = ((2*v*a)/(3*al**2))*(p(k-1)-*p(k))  



c                     + (2/a)*aj(nsec)  
c               + fr(k)*pt*v*a**2/(4*al)*((1/(alen0+al*nsec)**2)-
(1/(alen0+al*(nsec+1))**2))                    
c                     -(f*p(k))/(pi*al*a**2) 
c 
c 
c  The surface properties need to be calculated along with the pressure 
distribution 
c The results of the surface calculation are the outgassing rate in each section 
aj(k) 
c fr(k), the fraction of the directed "beam" from the trap entrance that is not 
c adsorbed on the first encounter in section k 
c 
c The surface calculation uses the following additional variables 
c 
c t0 = the peak probability of the RD adsorption site distribution 
c sigma0 = the saturated surface water loading in monolayers 
c r = the repulsive potential of the surface 
c alpha = accomodation coefficient of the surface for water 
c tau0 = the molecular oscillation frequency at the surface : 1.0e-12 sec 
c at(k) = the activation temperature of the surface site k 
c ap(n,k) = the probability that site k is occupied in tube segment n 
c temp = the surface temperature 
c 
c 
c 
c The program uses the Runge-Kutta algorithms given in Press et al  
c Numerical Recipes 2 for the pumping dynamics and a simple inegration 
c for the probability of occupancy evolution 
c  
        use winteracter 
 character fileout*50,surfile*50 
        dimension p(1000,8000),ystart(1000),time(8000),ystarts(1024) 
 dimension fr(1000),aj(1000),at(1024),ap(1000,1024),w(1024) 
 dimension aps(1024),z(1024)  
 common /path/ kmax,kount,dxsav,xp,yp 
        common /deriv/ aa,bb,cc,dd,ee,alen0,nsec,al 
 common /deriv1/ t0,sigma0,r,alpha,tau0,temp,nsite,v 
 write(unit=*,fmt=601) 
601     format(' enter # of sections :' $) 
 read(unit=*,fmt=602)nsec 
602     format(i6) 
 write(unit=*,fmt=1) 
1       format(' enter pump speed lit/sec : ' $) 
 read(unit=*,fmt=4)f 
2       format(2e15.6) 
 write(unit=*,fmt=605) 
605     format(' enter amu of gas : '$) 
 read(unit=*,fmt=4)amu 
 write (unit=*,fmt=701) 
701     format(' enter init p(torr) at n2 trap,lgth (m) to fst sect:'$) 
        read(unit=*,fmt=702)ptinit,alen0 
 write(unit=*,fmt=703) 
703 format(' enter # 10^n reduction p(torr) at n2trap, time(min) : '$) 
 read(unit=*,fmt=7022)nptfin,ptftm 
7022 format(i5,e15.6) 
702 format(2e15.6) 



 alen0=alen0*100.0 
4       format(e15.6) 
c enter the fixed parameters 
c beam tube radius cm 
 a = 62.0 
c thermal speed of gas in cm/sec 
 v = (5.263e4)*sqrt(18.0/amu) 
c module length cm 
 al0 = 4.0e5 
c number of sections 
 an = real(nsec) 
c section length cm 
 al = al0/an 
c conversion pumping speed from liters/sec to cc/sec 
 f = f*1000.0 
 write(unit=*,fmt=9) 
9       format(' enter starting pressure in torr : '$) 
 read(unit=*,fmt=4)pstart 
 aa = (2.0*v*a)/(3.0*al**2) 
 bb = 2.0/a 
 dd = f/(3.14159*al*a**2) 
 ee = (ptinit*v*a**2)/(4.0*al) 
 do 1000 kt = 1,nsec 
 p(kt,1)=pstart 
1000    continue 
 write(unit=*,fmt=7) 
7       format(' time(minutes)/step, #steps total, #calsteps/step :'$) 
 read(unit=*,fmt=8)tstep1,nstep,intstep 
8       format(e15.6,2i6) 
c        write(unit=*,fmt=451) 
c451     format('  enter 1 to write calc values : '$) 
c        read(unit=*,fmt=452)iwrt 
c452     format(i3) 
c convert time to seconds 
 tstep = (tstep1/real(intstep))*60.0 
 x2=0.0 
 nvar = nsec 
 eps = 1.0e-4 
c       h1 = (1.0e-3)*tstep 
c       hmin = (1.0e-7)*tstep 
 h1 = (1.0e-7)*tstep 
 hmin=(1.0e-11)*tstep 
c surface program input 
 write(unit=*,fmt=6011) 
6011 format('  enter sigma0 surf coverage monoly,DR pk temp K :'$) 
 read(unit=*,fmt=6022)sigma0,t0 
6022 format(2e15.6) 
c convert monolayers to particles/cm**2 
 sigma0 = 1.0e15*sigma0 
 write(unit=*,fmt=6033) 
6033 format('  enter r repulsion term, alpha accom coef :'$) 
 read(unit=*,fmt=6022)r,alpha 
 write(unit=*,fmt=6066) 
6066 format(' enter temperature K cr>=296K :'$) 
 read(unit=*,fmt=4)temp 
 if(temp.eq.0.0)temp=296.0 
 write(unit=*,fmt=607) 



607 format('  enter tau0 sec cr>=1.0e-12 sec : '$) 
 read(unit=*,fmt=4)tau0 
 if(tau0.eq.0.0)tau0 = 1.0e-12 
 write(unit=*,fmt=604) 
604 format('  enter activ T and occupt prob filename : '$) 
 read(unit=*,fmt=6055)surfile 
6055 format(a50) 
 open(unit=3,file=surfile) 
 read(unit=3,fmt=*)nsite 
 do 610 k=1,nsite 
 read(unit=3,fmt=*)at(k),aps(k) 
610 continue 
 close (3) 
c set up weighting and activation energies 
 deltat = 3.0*t0/real(nsite) 
 sum = 0.0  
 do 615 K=1,nsite 
 w(k)=((2.0*at(k)*deltat)/t0**2)*exp(-(at(k)/t0)**2) 
 sum = sum + w(k) 
615 continue 
c normalize 
 do 616 k=1,nsite 
 w(k)=w(k)/sum 
 aj(k) = 0.0 !set first outgassing pf each sect 0 
616 continue 
c set all sections with equal water loading from file 
 do 617 ksec = 1, nsec 
 do 618 ksite = 1, nsite 
 ap(ksec,ksite) = aps(ksite) 
618 continue 
617 continue 
c start the calculation 
c write(unit=*,fmt=9099)tstep 
c9099 format('  tstep = ' 1pe12.3) 
 kill = 0 
 do 100 k=1,nstep 
 if(kill.ge.nptfin)go to 6666 
 tmm = x2/60.0 
 if(tmm.ge.ptftm)then 
 kill = kill + 1 
 ee=ee/(10.0**kill) 
 end if 
6666 do 300 j=1,intstep 
 x1 = x2 
 x2 = x1 + tstep 
 if(j.eq.1.and.k.eq.1)then 
 do 1002 n=1,nsec 
 ystart(n)= pstart 
1002    continue 
 time(k)=x1/60.0 
 p(nsec+1,k)=pstart 
 end if 
c the surface routine 
c establish the fraction of beamed gas that sticks 
 do 210 ksec=1,nsec 
 do 220 ksite=1,nsite 
 z(ksite)=ap(ksec,ksite) 



220 continue 
 call beamfraction(ksec,w,deltat,z,at,frr) 
 fr(ksec)=frr 
210 continue 
 do 620 ksec=1,nsec 
c write(unit=*,fmt=901)ksec,k,j 
c901 format('  main first: ksec = 'i5,' k = ' i5, 'j = 'i5 ) 
 do 725 ksite=1,nsite 
 ystarts(ksite)=ap(ksec,ksite) 
725 continue 
 do 230 ksite=1,nsite 
 z(ksite)=ap(ksec,ksite) 
230 continue 
c determine the evolution of the occupation probability at each site 
 call probev(ksec,ystart,tstep,at,z) 
 do 240 ksite=1,nsite 
 ap(ksec,ksite) = z(ksite) 
240 continue 
c  determine the outgassing rate in each section 
 sumb = 0.0 
 suma = 0.0 
 do 635 ksite=1,nsite 
 suma = suma + ystarts(ksite)*w(ksite)*sigma0 
 sumb = sumb + ap(ksec,ksite)*w(ksite)*sigma0 
635 continue 
 aj(ksec) = (suma-sumb)/(tstep*3.0e16)  !torr cc/sec/cm**2 
c ajtorr = aj(ksec)/1000.0  !convert to torr-liters/sec/cm**2 
c if outgassing rate is < 0 , make it 0 
 if(aj(ksec).lt.0.0)aj(ksec)=0.0 
c write(unit=*,fmt=681)j,ksec,ajtorr,sumb,suma 
c681 format('  j=' i3,'sec='i3,'t-l/sec/cm**2='1pe12.3,'suma='1pe12.3, 
c     &  'sumb='1pe12.3) 
c read(unit=*,fmt=9901)ig 
c9901 format(i3) 
620 continue 
 call odeint(ystart,nvar,x1,x2,eps,h1,hmin,nok,nbad,fr,aj) 
300     continue 
 do 1003 n=1,nsec 
 p(n,k+1)=ystart(n) 
c        write(unit=*,fmt=420)time(k),n,p(n,k+1) 
c420     format(' time ='1pe12.4,' n = 'i5,' pressure = '1pe12.4) 
c        read(unit=*,fmt=421)junk 
c421     format(i3) 
1003    continue 
 time(k+1)=x2/60.0 
c calculate the average pressure 
 sum = 0.0 
 do 400 n=1,nsec 
 sum  = sum + p(n,k+1)/an 
400     continue 
 p(nsec+1,k+1)=sum 
 write(unit=*,fmt=11)k,time(k),p(nsec+1,k) 
11      format(' k= 'i4,' time min='1pe15.6,  '<p>(torr)='1pe15.6) 
100     continue 
2000    write(unit=*,fmt=77) 
77      format('enter fileout: '$) 
 read(unit=*,fmt=78)fileout 



78      format(a50) 
 open(unit=2,file=fileout) 
 write(unit=*,fmt=2001)nsec+1,nsec+2 
2001    format(' enter #segmt or 'i4,'=<p> or 'i4,'=p vs sec @ end:'$) 
 read(unit=*,fmt=2002)ks 
2002    format(i6) 
        if(ks.eq.nsec+2)then 
        write(unit=2,fmt=79)nsec 
        do 2060 kz=1,nsec 
        xz = real(kz)*al/100.0 
        write(unit=2,fmt=80)xz,p(kz,nstep+1) 
2060    continue 
        end if 
 write(unit=2,fmt=79)nstep+1 
79      format(i5) 
 do 200 kj=1,nstep+1 
 write(unit=2,fmt=80)time(kj),p(ks,kj) 
80      format(1pe15.6,1pe15.6) 
200     continue 
 close (2) 
 write(unit=*,fmt=8850) 
8850 format(' enter 1 for monolayer and prob files : ' $) 
 read(unit=*,fmt=8851)imono 
8851 format(i3) 
 if(imono.eq.1)then 
 write(unit=*,fmt=8852) 
8852 format('  enter output file name for initial monolayers : '$) 
 read(unit=*,fmt=78)fileout 
 open(unit=3,file=fileout) 
 write(unit=3,fmt=8853)nsec 
8853 format(i5) 
 do 8860 n=1,nsec 
 aload = 0.0 
 do 8865 k=1,nsite 
 aload = aload + aps(k)*w(k)*sigma0/1.0e15 
8865 continue 
 asec = real(n) 
 write(unit=3,fmt=8866)asec,aload 
8866 format(1pe15.6,1pe15.6) 
8860 continue 
 close (3) 
 
 write(unit=*,fmt=8872) 
8872 format('  enter output file name for final monolayers : '$) 
 read(unit=*,fmt=78)fileout 
 open(unit=3,file=fileout) 
 write(unit=3,fmt=8873)nsec 
8873 format(i5) 
 do 8870 n=1,nsec 
 aload = 0.0 
 do 8875 k=1,nsite 
 aload = aload + ap(n,k)*w(k)*sigma0/1.0e15 
8875 continue 
 asec = real(n) 
 write(unit=3,fmt=8866)asec,aload 
8870 continue 
 close (3) 



 write(unit=*,fmt=7100) 
7100 format(' enter output file name for final occupation prob : '$) 
 read(unit=*,fmt=7101)fileout 
7101 format(a50) 
 open(unit=3,file=fileout) 
 write(unit=3,fmt=7102)nsite 
7102 format(i5) 
 write(unit=*,fmt=7103) 
7103 format(' enter number of section : '$) 
 read(unit=*,fmt=7102)kksec 
 do 7500 kk=1,nsite 
 write(unit=3,fmt=7104)at(kk),ap(kksec,kk) 
7500 continue 
7104 format(1pe15.6,1pe15.6) 
 close(3) 
 end if 
 
 
 write(unit=*,fmt=2003) 
2003    format(' enter 1 to write another file: '$) 
 read(unit=*,fmt=2004)igo 
2004    format(i3) 
 if(igo.eq.1)go to 2000 
3000    continue 
 end 
 
 subroutine derivs(x,y,dydx,x2,fr,aj) 
 dimension y(1000),dydx(1000),fr(1000),aj(1000) 
        common /deriv/ aa,bb,cc,dd,ee,alen0,nsec,al 
 do 100 n=2,nsec-1 
 xy = aa*(y(n-1)+y(n+1)-2.0*y(n))+bb*aj(n) 
       xxy=((1.0/(alen0+real(n)*al)**2)-(1.0/(alen0+real(n+1)*al)**2)) 
 dydx(n) = xy + ee*xxy*fr(n) 
100     continue 
 xxy = ((1.0/(alen0)**2)-(1.0/(alen0+al)**2)) 
 dydx(1) = aa*(y(2)-y(1)) + bb*aj(1) -dd*y(1) + ee*xxy*fr(1) 
        xy = 2.0*aa*(y(nsec-1)-y(nsec)) + bb*aj(nsec) - dd*y(nsec) 
        xxy = (1.0/(alen0+real(nsec)*al)**2) 
        xxy=xxy-(1.0/(alen0+real(nsec+1)*al)**2) 
        dydx(nsec) = xy + ee*xxy*fr(nsec) 
 return 
 end 
 
 
 
      SUBROUTINE odeint(ystart,nvar,x1,x2,eps,h1,hmin,nok,nbad,fr,aj) 
      INTEGER nbad,nok,nvar,KMAXX,MAXSTP,NMAX 
      REAL eps,h1,hmin,x1,x2,ystart(nvar),TINY 
 dimension fr(1000),aj(1000) 
      PARAMETER (MAXSTP=10000,NMAX=1000,KMAXX=8000,TINY=1.e-30) 
      INTEGER i,kmax,kount,nstp 
      REAL dxsav,h,hdid,hnext,x,xsav,dydx(NMAX),xp(KMAXX),y(NMAX), 
     *yp(NMAX,KMAXX),yscal(NMAX) 
      COMMON /path/ kmax,kount,dxsav,xp,yp 
      common /deriv/ aa,bb,cc,dd,ee,alen0,nsec,al 
      x=x1 
      h=sign(h1,x2-x1) 



      nok=0 
      nbad=0 
      kount=0 
      do 11 i=1,nvar 
 y(i)=ystart(i) 
11    continue 
      if (kmax.gt.0) xsav=x-2.*dxsav 
      do 16 nstp=1,MAXSTP 
        call derivs(x,y,dydx,x2,fr,aj) 
 do 12 i=1,nvar 
   yscal(i)=abs(y(i))+abs(h*dydx(i))+TINY 
12      continue 
 if(kmax.gt.0)then 
   if(abs(x-xsav).gt.abs(dxsav)) then 
     if(kount.lt.kmax-1)then 
       kount=kount+1 
       xp(kount)=x 
       do 13 i=1,nvar 
  yp(i,kount)=y(i) 
13            continue 
       xsav=x 
     endif 
   endif 
 endif 
 if((x+h-x2)*(x+h-x1).gt.0.) h=x2-x 
 call rkqs(y,dydx,nvar,x,h,eps,yscal,hdid,hnext,x2,fr,aj) 
 if(hdid.eq.h)then 
   nok=nok+1 
 else 
   nbad=nbad+1 
 endif 
 if((x-x2)*(x2-x1).ge.0.)then 
   do 14 i=1,nvar 
     ystart(i)=y(i) 
14        continue 
   if(kmax.ne.0)then 
     kount=kount+1 
     xp(kount)=x 
     do 15 i=1,nvar 
       yp(i,kount)=y(i) 
15          continue 
   endif 
   return 
 endif 
 if(abs(hnext).lt.hmin) pause 
     *'stepsize smaller than minimum in odeint' 
 h=hnext 
16    continue 
      pause 'too many steps in odeint' 
      return 
      END 
C  (C) Copr. 1986-92 Numerical Recipes Software 7%W3. 
 
 
      SUBROUTINE rkqs(y,dydx,n,x,htry,eps,yscal,hdid,hnext,x2,fr,aj) 
      INTEGER n,NMAX 
      REAL eps,hdid,hnext,htry,x,dydx(n),y(n),yscal(n) 



 dimension fr(1000),aj(1000) 
      PARAMETER (NMAX=1000) 
CU    USES derivs,rkck 
      INTEGER i 
      REAL errmax,h,xnew,yerr(NMAX),ytemp(NMAX),SAFETY,PGROW,PSHRNK, 
     *ERRCON 
      PARAMETER (SAFETY=0.9,PGROW=-.2,PSHRNK=-.25,ERRCON=1.89e-4) 
      common /deriv/ aa,bb,cc,dd,ee,alen0,nsec,al 
      h=htry 
1     call rkck(y,dydx,n,x,h,ytemp,yerr,x2,fr,aj) 
      errmax=0. 
      do 11 i=1,n 
       errmax=max(errmax,abs(yerr(i)/yscal(i))) 
11    continue 
      errmax=errmax/eps 
      if(errmax.gt.1.)then 
 h=SAFETY*h*(errmax**PSHRNK) 
 if(h.lt.0.1*h)then 
   h=.1*h 
 endif 
 xnew=x+h 
  if(xnew.eq.x)pause 'stepsize underflow in rkqs' 
 goto 1 
      else 
 if(errmax.gt.ERRCON)then 
   hnext=SAFETY*h*(errmax**PGROW) 
 else 
   hnext=5.*h 
 endif 
 hdid=h 
 x=x+h 
 do 12 i=1,n 
   y(i)=ytemp(i) 
12      continue 
 return 
      endif 
      END 
C  (C) Copr. 1986-92 Numerical Recipes Software 7%W3. 
 
 
      SUBROUTINE rkck(y,dydx,n,x,h,yout,yerr,x2,fr,aj) 
      INTEGER n,NMAX 
      REAL h,x,dydx(n),y(n),yerr(n),yout(n) 
 dimension fr(1000),aj(1000) 
      PARAMETER (NMAX=1000) 
CU    USES derivs 
      common /deriv/ aa,bb,cc,dd,ee,alen0,nsec,al 
 INTEGER i 
      REAL ak2(NMAX),ak3(NMAX),ak4(NMAX),ak5(NMAX),ak6(NMAX), 
     *ytemp(NMAX),A2,A3,A4,A5,A6,B21,B31,B32,B41,B42,B43,B51,B52,B53, 
     *B54,B61,B62,B63,B64,B65,C1,C3,C4,C6,DC1,DC3,DC4,DC5,DC6 
      PARAMETER (A2=.2,A3=.3,A4=.6,A5=1.,A6=.875,B21=.2,B31=3./40., 
     *B32=9./40.,B41=.3,B42=-.9,B43=1.2,B51=-11./54.,B52=2.5, 
     *B53=-70./27.,B54=35./27.,B61=1631./55296.,B62=175./512., 
     *B63=575./13824.,B64=44275./110592.,B65=253./4096.,C1=37./378., 
     *C3=250./621.,C4=125./594.,C6=512./1771.,DC1=C1-2825./27648., 
     *DC3=C3-18575./48384.,DC4=C4-13525./55296.,DC5=-277./14336., 



     *DC6=C6-.25) 
      do 11 i=1,n 
 ytemp(i)=y(i)+B21*h*dydx(i) 
11    continue 
      call derivs(x+A2*h,ytemp,ak2,x2,fr,aj) 
      do 12 i=1,n 
 ytemp(i)=y(i)+h*(B31*dydx(i)+B32*ak2(i)) 
12    continue 
      call derivs(x+A3*h,ytemp,ak3,x2,fr,aj) 
      do 13 i=1,n 
 ytemp(i)=y(i)+h*(B41*dydx(i)+B42*ak2(i)+B43*ak3(i)) 
13    continue 
      call derivs(x+A4*h,ytemp,ak4,x2,fr,aj) 
      do 14 i=1,n 
 ytemp(i)=y(i)+h*(B51*dydx(i)+B52*ak2(i)+B53*ak3(i)+B54*ak4(i)) 
14    continue 
      call derivs(x+A5*h,ytemp,ak5,x2,fr,aj) 
      do 15 i=1,n 
 ytemp(i)=y(i)+h*(B61*dydx(i)+B62*ak2(i)+B63*ak3(i)+B64*ak4(i)+ 
     *B65*ak5(i)) 
15    continue 
      call derivs(x+A6*h,ytemp,ak6,x2,fr,aj) 
      do 16 i=1,n 
 yout(i)=y(i)+h*(C1*dydx(i)+C3*ak3(i)+C4*ak4(i)+C6*ak6(i)) 
16    continue 
      do 17 i=1,n 
 yerr(i)=h*(DC1*dydx(i)+DC3*ak3(i)+DC4*ak4(i)+DC5*ak5(i)+DC6* 
     *ak6(i)) 
17    continue 
      return 
      END 
C  (C) Copr. 1986-92 Numerical Recipes Software 7%W3. 
 
 
 subroutine beamfraction(ksec,w,deltat,z,at,frr) 
 common /deriv/ aa,bb,cc,dd,ee,alen0,nsec,al 
 common /deriv1/ t0,sigma0,r,alpha,tau0,temp,nsite,v 
 dimension w(1024),at(1024),z(1024) 
 sum = 0.0 
 do 200 ksite=1,nsite 
 bc = (1.0-r)*at(ksite)/temp 
 ac = (1.0+bc)*exp(-bc) 
 sum = sum + w(ksite)*ac*(1.0-z(ksite)) 
200 continue 
 frr = 1.0 -sum*alpha 
c write(unit=*,fmt=201)ksec,frr 
c201 format('  sec = 'i5, ' fraction = '1pe15.6) 
 return 
 end 
 
 
 subroutine probev(ksec,ystart,tstep,at,z) 
 dimension z(1024),at(1024) 
 dimension ystart(1000) 
 common /deriv/ aa,bb,cc,dd,ee,alen0,nsec,al 
 common /deriv1/ t0,sigma0,r,alpha,tau0,temp,nsite,v 
 conv = 1.0/3.0e16 



c tc=1.0/aa 
c mm=int(tstep/tc) 
c dt = tstep/real(mm) 
c do 50 m=1,mm 
 do 100 n=1,nsite 
 rt = at(n)/temp 
 tauemit = tau0*exp(rt) 
 tg = (1.0 - r)*rt 
 tt = (1.0 + tg)*exp(-tg) 
 tauads1 = conv*4.0*sigma0/(alpha*ystart(ksec)*v*tt) 
 xxy=((1.0/(alen0+real(ksec)*al)**2) 
     &  -(1.0/(alen0+real(ksec+1)*al)**2)) 
 if(ksec.eq.1)xxy=((1.0/(alen0**2))-(1.0/(alen0+al)**2)) 
 if(ksec.eq.nsec)xxy=(1.0/(alen0+real(nsec)*al)**2) 
     &  -(1.0/(alen0+real(nsec+1)*al)**2) 
 tauads2 = conv*sigma0/(ee*xxy*tt) 
 tauads = (tauads1*tauads2)/(tauads1+tauads2) 
 tau = (tauads*tauemit)/(tauads+tauemit) 
 if(z(n).lt.1.0e-7.and.tauemit.lt.1.0e-8)go to 100 
 if(z(n).gt.9.999e-1.and.tauads.gt.1.0e8)go to 100 
 zequil = tauemit/(tauemit+tauads) 
 ax = exp(-tstep/tau) 
 z(n) = z(n)*ax + zequil*(1.0-ax) 
c write(unit=*,fmt=901)ksec,n,m,z(n) 
c901 format('  probev:ksec = 'i3,'n = 'i3,'m = 'i3,' z(n) = '1pe12.3) 
c ig = ig +1 
c if(ig.eq.50)then 
c ig = 0 
c read(unit=*,fmt=902)igg 
c902 format(i5) 
c end if 
100 continue 
c50 continue 
 return 
 end 
 
 
 
    



c *******btwaterdistribution2a.for   October 14, 2008 
c Program estimates the water pressure above the surface when 
c loaded with water from geometric transmission by the trap and 
c steady state pumping by the trap 
c 
c This version allows the trap pressure to be reduced by powers 
c of ten after a set time 
c 
c The program uses the Runge Kutta techniques from Numerical Recipes 
c The calculation is made in cgs units with the pressure in torr 
c 
c  The outgassing is described by: 
c 
c      aj = outgassing rate torr liters/sec 
c 
c      ad(k) = the deposition of water on section k. given by 
c      the pressure at the entrance to the trap multiplied by 
c      the molecular speed times the solid angle of the section 
c      subtended at the entrance to the trap normalized by 4*pi 
c 
c      a = tube radius 
c 
c      al = length of module/4*number of sections 
c 
c      f = pumping speed of the cryopump at one end of the module 
c 
c      v = thermal velocity of molecule at 300K 
c 
c      pt = water pressure at entrance to trap 
c 
c      alen0 = distance from front of trap to middle of the 
c              first section of tube 
c 
c Difference equation to solve 
c 
c Section 1:  dp/dt = ((2*v*a)/(3*al**2))*(p(2)-p(1)) + (2/a)*aj 
c end pt            - (f*p(1))/(pi*al*a**2)  
c                   + pt*v*a**2/(4*al)*((1/(alen0)**2)-(1/(alen0+al)**2)) 
c 
c 
c 
c Section k : dp/dt = ((2*v*a)/(3*al**2))*(p(k-1)-2*p(k) +p(k+1))  
c                     + (2/a)*aj   
c                     + pt*v*a**2/(4*al)*((1/(alen0+al*(k))**2)-
(1/(alen0+al(k+1))**2)) 
c                      
c 
c last section dp/dt = ((2*v*a)/(3*al**2))*(p(k-1)-*p(k))  
c                     + (2/a)*aj  
c               + pt*v*a**2/(4*al)*((1/(alen0+al*k)**2)-
(1/(alen0+al*(k+1))**2))                    
c                     -(f*p(k))/(pi*al*a**2) 
c 
c The program uses the Runge-Kutta algorithms given in Press et al  
c Numerical Recipes 2 
c  
        use winteracter 



 character fileout*50 
        dimension p(1000,8000),ystart(1000),time(8000)  
 common /path/ kmax,kount,dxsav,xp,yp 
        common /deriv/ aa,bb,cc,dd,ee,alen0,nsec,al 
 write(unit=*,fmt=601) 
601     format(' enter # of sections :' $) 
 read(unit=*,fmt=602)nsec 
602     format(i6) 
 write(unit=*,fmt=1) 
1       format(' enter pump speed lit/sec, outgassing (tl/seccm^2): ' $) 
 read(unit=*,fmt=2)f,aj 
2       format(2e15.6) 
 aj = aj*1000.0 
 write(unit=*,fmt=605) 
605     format(' enter amu of gas : '$) 
 read(unit=*,fmt=4)amu 
 write (unit=*,fmt=701) 
701     format(' enter init p(torr) at n2trap,lgth (m) to fst sect :'$) 
        read(unit=*,fmt=702)ptinit,alen0 
702 format(2e15.6) 
 alen0=alen0*100.0 
4       format(e15.6) 
 write(unit=*,fmt=703) 
703 format(' enter # 10^n reduction p(torr) at n2trap, time(min) : '$) 
 read(unit=*,fmt=7022)nptfin,ptftm 
7022 format(i5,e15.6) 
c enter the fixed parameters 
c beam tube radius cm 
 a = 62.0 
c thermal speed of gas in cm/sec 
 v = (5.263e4)*sqrt(18.0/amu) 
c module length cm 
 al0 = 4.0e5 
c number of sections 
 an = real(nsec) 
c section length cm 
 al = al0/an 
c conversion pumping speed from liters/sec to cc/sec 
 f = f*1000.0 
 write(unit=*,fmt=9) 
9       format(' enter starting pressure in torr : '$) 
 read(unit=*,fmt=4)pstart 
 aa = (2.0*v*a)/(3.0*al**2) 
 bb = (2.0*aj)/a 
 dd = f/(3.14159*al*a**2) 
 ee = (ptinit*v*a**2)/(4.0*al) 
 do 1000 kt = 1,nsec 
 p(kt,1)=pstart 
1000    continue 
 write(unit=*,fmt=7) 
7       format(' time(minutes)/step, #steps total, #calsteps/step : '$) 
 read(unit=*,fmt=8)tstep1,nstep,intstep 
8       format(e15.6,2i6) 
        write(unit=*,fmt=451) 
451     format('  enter 1 to write calc values : '$) 
        read(unit=*,fmt=452)iwrt 
452     format(i3) 



c convert time to seconds 
 tstep = (tstep1/real(intstep))*60.0 
 x2=0.0 
 nvar = nsec 
 eps = 1.0e-4 
c       h1 = (1.0e-3)*tstep 
c       hmin = (1.0e-7)*tstep 
 h1 = (1.0e-7)*tstep 
 hmin=(1.0e-11)*tstep 
 kill = 0 
 do 100 k=1,nstep 
 if(kill.ge.nptfin)go to 6666 
 tmm = x2/60.0 
 if(tmm.ge.ptftm)then 
 kill = kill + 1 
 ee = ee/(10.0**kill) 
 end if 
6666 do 300 j=1,intstep 
 x1 = x2 
 x2 = x1 + tstep 
 if(j.eq.1.and.k.eq.1)then 
 do 1002 n=1,nsec 
 ystart(n)= pstart 
1002    continue 
 time(k)=x1/60.0 
 p(nsec+1,k)=pstart 
 end if 
 call odeint(ystart,nvar,x1,x2,eps,h1,hmin,nok,nbad) 
300     continue 
 do 1003 n=1,nsec 
 p(n,k+1)=ystart(n) 
c        write(unit=*,fmt=420)time(k),n,p(n,k+1) 
c420     format(' time ='1pe12.4,' n = 'i5,' pressure = '1pe12.4) 
c        read(unit=*,fmt=421)junk 
c421     format(i3) 
1003    continue 
 time(k+1)=x2/60.0 
c calculate the average pressure 
 sum = 0.0 
 do 400 n=1,nsec 
 sum  = sum + p(n,k+1)/an 
400     continue 
 p(nsec+1,k+1)=sum 
        if(iwrt.eq.1)then 
 write(unit=*,fmt=11)time(k),p(nsec+1,k) 
        end if 
11      format(' time (minutes) = '1pe15.6,  'avg p (torr) = '1pe15.6) 
100     continue 
2000    write(unit=*,fmt=77) 
77      format('enter fileout: '$) 
 read(unit=*,fmt=78)fileout 
78      format(a50) 
 open(unit=2,file=fileout) 
 write(unit=*,fmt=2001)nsec+1,nsec+2 
2001    format(' enter #segmt or 'i4,'=<p> or 'i4,'=p vs sec @ end:'$) 
 read(unit=*,fmt=2002)ks 
2002    format(i6) 



        if(ks.eq.nsec+2)then 
        write(unit=2,fmt=79)nsec 
        do 2060 k=1,nsec 
        xz = real(k)*al/100.0 
        write(unit=2,fmt=80)xz,p(k,nstep+1) 
2060    continue 
        end if 
 write(unit=2,fmt=79)nstep+1 
79      format(i5) 
 do 200 k=1,nstep+1 
 write(unit=2,fmt=80)time(k),p(ks,k) 
80      format(1pe15.6,1pe15.6) 
200     continue 
 close (2) 
 write(unit=*,fmt=2003) 
2003    format(' enter 1 to write another file: '$) 
 read(unit=*,fmt=2004)igo 
2004    format(i3) 
 if(igo.eq.1)go to 2000 
3000    continue 
 end 
 
 subroutine derivs(x,y,dydx,x2) 
 dimension y(1000),dydx(1000) 
        common /deriv/ aa,bb,cc,dd,ee,alen0,nsec,al 
 do 100 n=2,nsec-1 
 xy = aa*(y(n-1)+y(n+1)-2.0*y(n))+bb 
        xxy=((1.0/(alen0+real(n)*al)**2)-(1.0/(alen0+real(n+1)*al)**2)) 
 dydx(n) = xy + ee*xxy 
100     continue 
 xxy = ((1.0/(alen0)**2)-(1.0/(alen0+al)**2)) 
 dydx(1) = aa*(y(2)-y(1)) + bb -dd*y(1) + ee*xxy 
        xy = 2.0*aa*(y(nsec-1)-y(nsec)) + bb - dd*y(nsec) 
        xxy = (1.0/(alen0+real(nsec)*al)**2) 
        xxy=xxy-(1.0/(alen0+real(nsec+1)*al)**2) 
        dydx(nsec) = xy + ee*xxy 
 return 
 end 
 
 
      SUBROUTINE odeint(ystart,nvar,x1,x2,eps,h1,hmin,nok,nbad) 
      INTEGER nbad,nok,nvar,KMAXX,MAXSTP,NMAX 
      REAL eps,h1,hmin,x1,x2,ystart(nvar),TINY 
      PARAMETER (MAXSTP=10000,NMAX=1000,KMAXX=8000,TINY=1.e-30) 
      INTEGER i,kmax,kount,nstp 
      REAL dxsav,h,hdid,hnext,x,xsav,dydx(NMAX),xp(KMAXX),y(NMAX), 
     *yp(NMAX,KMAXX),yscal(NMAX) 
      COMMON /path/ kmax,kount,dxsav,xp,yp 
      common /deriv/ aa,bb,cc,dd,ee,alen0,nsec,al 
      x=x1 
      h=sign(h1,x2-x1) 
      nok=0 
      nbad=0 
      kount=0 
      do 11 i=1,nvar 
 y(i)=ystart(i) 
11    continue 



      if (kmax.gt.0) xsav=x-2.*dxsav 
      do 16 nstp=1,MAXSTP 
        call derivs(x,y,dydx,x2) 
 do 12 i=1,nvar 
   yscal(i)=abs(y(i))+abs(h*dydx(i))+TINY 
12      continue 
 if(kmax.gt.0)then 
   if(abs(x-xsav).gt.abs(dxsav)) then 
     if(kount.lt.kmax-1)then 
       kount=kount+1 
       xp(kount)=x 
       do 13 i=1,nvar 
  yp(i,kount)=y(i) 
13            continue 
       xsav=x 
     endif 
   endif 
 endif 
 if((x+h-x2)*(x+h-x1).gt.0.) h=x2-x 
 call rkqs(y,dydx,nvar,x,h,eps,yscal,hdid,hnext,x2) 
 if(hdid.eq.h)then 
   nok=nok+1 
 else 
   nbad=nbad+1 
 endif 
 if((x-x2)*(x2-x1).ge.0.)then 
   do 14 i=1,nvar 
     ystart(i)=y(i) 
14        continue 
   if(kmax.ne.0)then 
     kount=kount+1 
     xp(kount)=x 
     do 15 i=1,nvar 
       yp(i,kount)=y(i) 
15          continue 
   endif 
   return 
 endif 
 if(abs(hnext).lt.hmin) pause 
     *'stepsize smaller than minimum in odeint' 
 h=hnext 
16    continue 
      pause 'too many steps in odeint' 
      return 
      END 
C  (C) Copr. 1986-92 Numerical Recipes Software 7%W3. 
 
 
      SUBROUTINE rkqs(y,dydx,n,x,htry,eps,yscal,hdid,hnext,x2) 
      INTEGER n,NMAX 
      REAL eps,hdid,hnext,htry,x,dydx(n),y(n),yscal(n) 
      PARAMETER (NMAX=1000) 
CU    USES derivs,rkck 
      INTEGER i 
      REAL errmax,h,xnew,yerr(NMAX),ytemp(NMAX),SAFETY,PGROW,PSHRNK, 
     *ERRCON 
      PARAMETER (SAFETY=0.9,PGROW=-.2,PSHRNK=-.25,ERRCON=1.89e-4) 



      common /deriv/ aa,bb,cc,dd,ee,alen0,nsec,al 
      h=htry 
1     call rkck(y,dydx,n,x,h,ytemp,yerr,x2) 
      errmax=0. 
      do 11 i=1,n 
       errmax=max(errmax,abs(yerr(i)/yscal(i))) 
11    continue 
      errmax=errmax/eps 
      if(errmax.gt.1.)then 
 h=SAFETY*h*(errmax**PSHRNK) 
 if(h.lt.0.1*h)then 
   h=.1*h 
 endif 
 xnew=x+h 
  if(xnew.eq.x)pause 'stepsize underflow in rkqs' 
 goto 1 
      else 
 if(errmax.gt.ERRCON)then 
   hnext=SAFETY*h*(errmax**PGROW) 
 else 
   hnext=5.*h 
 endif 
 hdid=h 
 x=x+h 
 do 12 i=1,n 
   y(i)=ytemp(i) 
12      continue 
 return 
      endif 
      END 
C  (C) Copr. 1986-92 Numerical Recipes Software 7%W3. 
 
 
      SUBROUTINE rkck(y,dydx,n,x,h,yout,yerr,x2) 
      INTEGER n,NMAX 
      REAL h,x,dydx(n),y(n),yerr(n),yout(n) 
      PARAMETER (NMAX=1000) 
CU    USES derivs 
      common /deriv/ aa,bb,cc,dd,ee,alen0,nsec,al 
 INTEGER i 
      REAL ak2(NMAX),ak3(NMAX),ak4(NMAX),ak5(NMAX),ak6(NMAX), 
     *ytemp(NMAX),A2,A3,A4,A5,A6,B21,B31,B32,B41,B42,B43,B51,B52,B53, 
     *B54,B61,B62,B63,B64,B65,C1,C3,C4,C6,DC1,DC3,DC4,DC5,DC6 
      PARAMETER (A2=.2,A3=.3,A4=.6,A5=1.,A6=.875,B21=.2,B31=3./40., 
     *B32=9./40.,B41=.3,B42=-.9,B43=1.2,B51=-11./54.,B52=2.5, 
     *B53=-70./27.,B54=35./27.,B61=1631./55296.,B62=175./512., 
     *B63=575./13824.,B64=44275./110592.,B65=253./4096.,C1=37./378., 
     *C3=250./621.,C4=125./594.,C6=512./1771.,DC1=C1-2825./27648., 
     *DC3=C3-18575./48384.,DC4=C4-13525./55296.,DC5=-277./14336., 
     *DC6=C6-.25) 
      do 11 i=1,n 
 ytemp(i)=y(i)+B21*h*dydx(i) 
11    continue 
      call derivs(x+A2*h,ytemp,ak2,x2) 
      do 12 i=1,n 
 ytemp(i)=y(i)+h*(B31*dydx(i)+B32*ak2(i)) 
12    continue 



      call derivs(x+A3*h,ytemp,ak3,x2) 
      do 13 i=1,n 
 ytemp(i)=y(i)+h*(B41*dydx(i)+B42*ak2(i)+B43*ak3(i)) 
13    continue 
      call derivs(x+A4*h,ytemp,ak4,x2) 
      do 14 i=1,n 
 ytemp(i)=y(i)+h*(B51*dydx(i)+B52*ak2(i)+B53*ak3(i)+B54*ak4(i)) 
14    continue 
      call derivs(x+A5*h,ytemp,ak5,x2) 
      do 15 i=1,n 
 ytemp(i)=y(i)+h*(B61*dydx(i)+B62*ak2(i)+B63*ak3(i)+B64*ak4(i)+ 
     *B65*ak5(i)) 
15    continue 
      call derivs(x+A6*h,ytemp,ak6,x2) 
      do 16 i=1,n 
 yout(i)=y(i)+h*(C1*dydx(i)+C3*ak3(i)+C4*ak4(i)+C6*ak6(i)) 
16    continue 
      do 17 i=1,n 
 yerr(i)=h*(DC1*dydx(i)+DC3*ak3(i)+DC4*ak4(i)+DC5*ak5(i)+DC6* 
     *ak6(i)) 
17    continue 
      return 
      END 
C  (C) Copr. 1986-92 Numerical Recipes Software 7%W3. 
 
 
 




