The LIGO Interferometers

Initial and Advanced

Nergis Mavalvala
Outline

- Limiting Noise Sources for Initial LIGO
 - Seismic, thermal, photon shot noise
- Circumventing them for Advanced LIGO
 - Advanced isolation, improved materials, quantum optical noise
- Beyond 2010?
 - Terrestrial detectors ➔ cryogenic, QND
 - Space detector ➔ LISA
- Implications for Astrophysical Sources
Initial LIGO Sensitivity Goal

- Strain sensitivity < $3 \times 10^{-23} \ 1/\text{Hz}^{1/2}$ at 200 Hz
- Displacement Noise
 - Seismic motion
 - Thermal Noise
 - Radiation Pressure
- Sensing Noise
 - Photon Shot Noise
 - Residual Gas
- Facilities limits much lower
Limiting Noise Sources: Seismic Noise

- Motion of the earth few μm rms at low frequencies
- Passive seismic isolation ‘stacks’
 - amplify at mechanical resonances
 - but get f^{-2} isolation per stage above 10 Hz
Limiting Noise Sources: Thermal Noise

- Suspended mirror in equilibrium with 293 K heat bath \(\Rightarrow k_B T \) of energy per mode

- Fluctuation-dissipation theorem:
 - Dissipative system will experience thermally driven fluctuations of its mechanical modes
 \[
 \tilde{h}(f) = \frac{\sqrt{k_B T}}{\pi f L} \sqrt{\text{Re}(Z(f))}
 \]
 - \(Z(f) \) is impedance (loss)

- Low mechanical loss (high Quality factor)
 - Suspension \(\Rightarrow \) minimize stresses due to bends or ‘kinks’ in pendulum wire
 - Test mass \(\Rightarrow \) minimize internal material defects in optic
Limiting Noise Sources: Quantum Noise

- **Shot Noise**
 - Uncertainty in number of photons detected \Rightarrow
 \[
 h(f) = \frac{1}{L} \sqrt{\frac{hc\lambda}{8F^2P_{bs}}} \frac{1}{T_{ifo}(\tau_s, f)}
 \]
 - Higher input power $P_{bs} \Rightarrow$ need low optical losses
 - (Tunable) interferometer response \Rightarrow T_{ifo} depends on light storage time of GW signal in the interferometer

- **Radiation Pressure Noise**
 - Photons impart momentum to cavity mirrors
 - Fluctuations in the number of photons \Rightarrow
 \[
 h(f) = \frac{2F}{ML} \sqrt{\frac{2hP_{bs}}{\pi^3c\lambda}} \frac{T_{ifo}(\tau_s, f)}{f^2}
 \]
 - Lower input power, P_{bs}
 \Rightarrow Optimal input power for a chosen (fixed) T_{ifo}
Power-recycled Interferometer

Optical resonance: requires test masses to be held in position to $10^{-10} - 10^{-13}$ meter

Light is "recycled" ~50 times \rightarrow 300 W

Light bounces back and forth along arms ~100 times \rightarrow 30 kW

Laser + optical field conditioning

6W single mode

end test mass

input test mass

signal
Core Optics

- 25 cm diameter, 10 kg fused silica optics
- Polished substrates
 - Micro-roughness \(\leq 10 \) ppm scatter
- Optical coatings
 - \(\leq 2 \) ppm scatter
 - \(\leq 1 \) ppm absorption
- Metrology
 - Surface uniformity
 \(\sim 1 \) nm rms
Initial LIGO: Present Status

- Engineering runs 1 through 7 (2000 -- 2002)
- First astrophysical data run in 2002

- Some subsystems still to be installed (e.g. ASC)
- Some retrofitting to do
 - Seismic pre-isolation
 - Low-noise electronics
- Some more troubling problems (e.g. scattered light, “what-in-the-world-is-this?”)
Advanced LIGO (> 2006): A Quantum Limited Interferometer

Scientific motivation
- 10x increase in sensitivity
- 1000x increase in range (event rate)
- One day > 2 yr integ. run

Advanced LIGO
- Seismic noise 40 \rightarrow 10 \text{ Hz}
- Thermal noise 1/15
- Optical noise 1/10

Beyond Adv LIGO
- Thermal noise: cooling of test masses
- Quantum noise: quantum non-demolition
How will we get there?

- **Seismic noise**
 - Active isolation system (lower seismic cutoff from 40 to 10 Hz)
 - Mirror suspended as last stage of quadruple pendulum

- **Thermal noise**
 - Suspension: fused quartz; ribbons or variable diameter circular
 - Test mass: higher mechanical Q material, fused silica \rightarrow crystalline sapphire
 - Optical and thermal properties not always commensurate

- **Optical noise**
 - Input laser power: increase to ~200 W
 - Power handling and thermal deformation issues
 - Optimize interferometer response, $T_{ifo} \rightarrow$ signal recycling
 - Compounds optical complexity (another coupled dof to control)
 - Exposes quantum correlations since signal photons re-enter ifo
Optimizing the optical response: Signal Tuning

Cavity forms compound output coupler with complex reflectivity. Peak response tuned by changing position of SRM

Reflects GW photons back into interferometer to accrue more phase

\[r(l)e^{i\Phi(l)} \]
Optical configuration

125W

PRM T~6%

BS

T=0.5%

SAPPHIRE, 28.5CMφ

SILICA HERAEUS SV 35CMφ

SILICA LIGO I GRADE 28.5CMφ

OUTPUT MODE CLEANER

GW READOUT
Optical/Mechanical Intersection: Issues in Sapphire Optics

- Both optical and mechanical properties crucial
 - Mechanical losses → thermal noise
 - Optical absorption → thermal deformations

Material development: Substrates
- Large size (25 to 30 cm diameter) influences growth axis
- Internal mechanical losses low: $Q \sim 10^8$ (cf. fused SiO$_2$ $Q \sim 10^6$)
- Thermal conductivity higher → smaller thermal deformation
- Thermal expansion coefficient larger → thermoelastic damping
- Bulk absorption → need < 10ppm/cm, to date 20 to 45 ppm/cm after annealing treatment

- Optical coating properties also being studied
Advance LIGO Sensitivity: Improved and Tunable
Astrophysical sources of GWs

- **Coalescing compact binaries**
 - Classes of objects: NS-NS, NS-BH, BH-BH
 - Physics regimes: Inspiral, merger, ringdown

- **Other periodic sources**
 - Spinning neutron stars ➔ numerically hard problem

- **Burst events**
 - Supernovae ➔ asymmetric collapse

- **Stochastic background**
 - Primordial Big Bang
 - Continuum of sources

- **The Unexpected**

- GWs ➔ neutrinos ➔ photons ➔ now
Implications for source detection

- **NS-NS Inpiral**
 - Optimized detector response

- **NS-BH Merger**
 - NS can be tidally disrupted by BH
 - Frequency of onset of tidal disruption depends on its radius and equation of state ⇒ broadband detector

- **BH-BH binaries**
 - Merger phase ⇒ non-linear dynamics of highly curved space time
 ⇒ broadband detector

- **Supernovae**
 - Stellar core collapse ⇒ neutron star birth
 - If NS born with slow spin period (< 10 msec) hydrodynamic instabilities ⇒ GWs
Source detection

- Spinning neutron stars
 - Galactic pulsars: non-axisymmetry uncertain
 - Low mass X-ray binaries: If accretion spin-up balanced by GW spin-down, then X-ray luminosity → GW strength
 Does accretion induce non-axisymmetry?

- Stochastic background
 - Can cross-correlate detectors (but antenna separation between WA, LA, Europe ⇒ dead band)
 - $\Omega(f \sim 100 \text{ Hz}) = 3 \times 10^{-9}$ (standard inflation ⇒ 10^{-15})

 GW energy / closure energy
 - (primordial nucleosynthesis ≲ 10^{-5})
 - (exotic string theories ⇒ 10^{-5})
Other science from gravitational wave detectors

- **Astrophysics**
- **Tests of general relativity**
 - Waves ➔ direct evidence for time-dependent metric
 - Black hole signatures ➔ test of strong field gravity
 - Polarization of the waves ➔ spin of graviton
 - Propagation velocity ➔ mass of graviton
- **Precision measurements at and below the quantum limit set by Heisenberg on photons**
 - Story of NEMs